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We are concerned with different properties of backward stochastic differential equations and their
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0. INTRODUCTION

We are concerned with backward stochastic differential equations (BSDE) and with their
applications to finance. These equations were introduced by Bismut (1973) for the linear
case and by Pardoux and Peng (1990) in the general case. According to these authors, the
solution of a BSDE consists of a pair of adapted processes(Y, Z) satisfying

− dYt = f (t,Yt , Zt ) dt − Z∗t dWt ; YT = ξ,(0.1)

where f is the generator andξ is the terminal condition.
Actually, this type of equation appears in numerous problems in finance (as pointed out

in Quenez’s doctorate 1993). First, the theory of contingent claim valuation in a complete
market studied by Black and Scholes (1973), Merton (1973, 1991), Harrison and Kreps
(1979), Harrison and Pliska (1981), Duffie (1988), and Karatzas (1989), among others,
can be expressed in terms of BSDEs. Indeed, the problem is to determine the price of a
contingent claimξ ≥ 0 of maturityT , which is a contract that pays an amountξ at time
T . In a complete market it is possible to construct a portfolio which attains as final wealth
the amountξ . Thus, the dynamics of the value of the replicating portfolioY are given
by a BSDE with linear generatorf , with Z corresponding to the hedging portfolio. Then
the price at timet is associated naturally with the value at timet of the hedging portfolio.
However, there exists an infinite number of replicating portfolios and consequently the

1The authors are grateful to Stanley Pliska for his fruitful comments about the revision of this paper and to the
anonymous referees for their careful reading and numerous suggestions.
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price is not well defined. But arbitrage pricing theory imposes some restrictions on the
integrability of the hedging portfolios. In general, these assumptions are related to a risk-
adjusted probability measure. Using BSDE theory, we will show that the problem is well
posed—that is, there exist a unique price and a unique hedging portfolio—by restricting
admissible strategies to square-integrable ones under the primitive probability.

On the other hand, the pricing theory has been studied in the context of an incomplete
market by F¨ollmer and Schweizer (1990) and El Karoui and Quenez (1995). In this situation
it is not always possible to construct a portfolio which attains exactly as final wealth the
amountξ , and the price cannot be determined by no-arbitrage arguments. The replication
error is called the tracking error. El Karoui and Quenez (1995) only considered superstrate-
gies, which are strategies with a positive tracking error, and defined the upper price for each
contingent claimξ as the smallest investment which allows one to superhedge the contin-
gent claimξ . They showed that the upper price is equal to the value function of a control
problem. Using this dual characterization, they stated that the upper price corresponds to a
superstrategy. The upper price process is not a solution of a BSDE, but it can be written as
the increasing limit of penalized price processes which are solutions of nonlinear BSDEs.
We shall see that the duality between the hedging problem and the pricing one, emphasized
by El Karoui and Quenez (1995), corresponds to a general duality between convex BSDEs
and some control problems.

Concerning this problem of pricing a contingent claimξ in an incomplete market, F¨ollmer
and Schweizer (1990) introduced the notion of local risk-minimizing strategies, for which
the tracking error is a square-integrable martingale orthogonal to the basic securities. We
show that this pricing rule corresponds to a standard valuation in a market where only the
traded securities have a return different from the spot rate. The price forξ is still a solution
of a linear BSDE.

Recall that the results stated by El Karoui and Quenez (1995) for the constrained case of
an incomplete market were generalized to convex constraints on the portfolios by Cvitanic
and Karatzas (1992). Other nonlinear backward equations were introduced by those authors
for the hedging problem with a higher interest rate for borrowing. In this case, the dynamics
of the wealth process are given by a nonlinear convex BSDE.

Duffie and Epstein (1992a, 1992b) presented a stochastic differential formulation of
recursive utility in the case of information generated by Brownian motion. Recursive utility
is an extension of the standard additive utility with the instantaneous utility depending not
only on the instantaneous consumption ratect but also on the future utility. Actually, it
corresponds to the solution of a particular BSDE associated with a generatorf which does
not depend onz. Duffie and Epstein showed that, under Lipschitz conditions, the recursive
utility exists and satisfies the usual properties of standard utilities (concavity with respect to
consumption if the BSDE is concave). The BSDE point of view gives a simple formulation
of recursive utilities and their properties.

In this paper we summarize the results on existence and uniqueness by Pardoux and Peng
(1990) and give new (shorter) proofs. We state some a priori estimates of the difference
between the solutions of two BSDEs; the existence and uniqueness of the solution of a
BSDE follow from a fixed-point theorem. Also, we recall that one of the most important
properties of BSDEs is a comparison theorem which can be obtained under quite general
conditions. For example, this theorem gives a sufficient condition for the wealth process to
be nonnegative and yields the classical properties of utilities.

Also, BSDEs with concave (or convex) generators are associated by duality with the
value function of a control problem. Thus, the duality introduced by El Karoui and Quenez
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(1991, 1995) in the hedging and pricing problem in a constrained case can be generalized
to other cases such as recursive utilities. This result gives an interesting interpretation of
recursive utilities of consumption: the utility can be expressed as the minimum of ex post
utilities over all possible future price deflators. Actually, this variational formulation of
recursive utilities had been introduced by Geoffard (1995) in a deterministic framework.
Moreover, this result can be applied to European option pricing. In some constrained cases
the price of a contingent claim is given by the solution of a nonlinear convex BSDE. As the
utility function, the price can be written as the maximum of “ex post” prices taken over all
changes of “numeraire” feasible for the wealth; also the set of controls is bounded and the
maximum is attained for an optimal change of numeraire.

Furthermore, we are concerned with the solution of BSDEs associated with a state process
satisfying some forward classical SDEs. The main property is that the solution is Markovian
in the sense that it can be written as a function of time and a state process. Important
results concerning the link between those BSDEs and PDEs have been stated by Pardoux
and Peng (1992) and Peng (1991, 1992a, 1992b, 1992c) in the Markovian case; these
Markovian BSDEs give a Feynman-Kac representation of some nonlinear parabolic partial
differential equations. Conversely, under smoothness assumptions the solution of the BSDE
corresponds to the solution of a system of quasilinear parabolic PDEs. These results
can be applied to European option pricing in the constrained Markovian case and give a
generalization of the Black and Scholes formula.

The outline of the paper is as follows. In the first section we give some examples of
BSDEs which appear naturally in the problem of pricing and hedging contingent claims.
Actually, the dynamics of wealth processes can be written as a BSDE; these equations
are linear in the classical case and nonlinear (but convex) in the case of constraints on the
portfolio. Another example is given by the stochastic differential formulation of recursive
utilities introduced by Duffie and Epstein (1992a, 1992b).

In Section 2 we present some important results for BSDEs: a priori estimates of the
difference between two solutions, existence and uniqueness, a comparison theorem, and
supersolutions. Also, we study the properties of continuity and differentiability of the
solutions of BSDEs with respect to parameters, properties which follow essentially from
the a priori estimates. Finally, we give the flow properties of BSDEs.

In Section 3 we study the properties of concave (or convex) BSDEs. We show that, in this
case, the solution of the BSDE can be written as the value function of a control problem.
Then we give some applications of these results to finance.

In Section 4 we study different properties of the solution of a BSDE associated with
some forward SDEs (regularity, measurability), and, in particular, we prove under very
weak assumptions that the solution only depends on time and the state process. Then we
recall different results concerning the link between these solutions and some PDEs, and we
give a simple application to European option pricing in the constrained case.

In Section 5 we give some complementary results on BSDEs. First, we solve the BSDE
in the case of a non-Brownian filtration and underp-integrability assumptions (p > 1).
Second, we study in detail the properties of differentiation on Wiener space of the solution
of a BSDE in the spirit of the work of Pardoux and Peng (1992). Applying these results
to finance, we show that the portfolio process of a hedging strategy corresponds to the
Malliavin derivative of the price process. This important property was first emphasized by
Karatzas and Ocone (1992) in the nonconstrained case (i.e., the linear case).
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1. BACKWARD DIFFERENTIAL EQUATIONS IN FINANCE

1.1. The Model

We begin with the typical setup for continuous-time asset pricing: the basic securities
consist ofn+1 assets. One of them is a locally riskless asset (the money market instrument
or bond) with price per unitP0 governed by the equation

d P0
t = P0

t r t dt,(1.1)

where rt is the short rate. In addition to the bond,n risky securities (the stocks) are
continuously traded. The price processPi for one share ofi th stock is modeled by the
linear stochastic differential equation

d Pi
t = Pi

t

[
bi

t dt +
n∑

j=1

σ
i, j
t dWj

t

]
,(1.2)

whereW = (W1, . . . ,Wn)∗ is a standard Brownian motion onRn, defined on a probability
space(Ä,F ,P). P is said to be the “objective” probability measure. The information
structure is given by a right-continuous filtration(Ft ; 0 ≤ t ≤ T). Usually,(Ft ) is the
σ -algebra generated by the Brownian motionW = (W1, . . . ,Wn)∗ and augmented.2 We
make the following standard assumptions.

HYPOTHESIS1.1.

• The short rater is a predictable and bounded process. It is generally nonnegative.
• The column vector of the stock appreciation ratesb = (b1, . . . ,bn)∗ is a predictable

and bounded process.
• The volatility matrixσ = (σ i, j ) is a predictable and bounded process.σt has full

rank a.s. for allt ∈ [0, T ] and the inverse matrixσ−1 is a bounded process.
• There exists a predictable and bounded-valued process vectorθ , called a risk premium,

such that

bt − rt1 = σt θt , dP⊗ dt a.s.,

where1 is the vector whose every component is 1.

Under these assumptions the market is dynamically complete.

2The augmented Brownian filtrationF = {(Ft ), t ∈ [0, T ]} is defined byFt = σ(FW
t ∪ Z), whereFW

t =
σ(Ws; s ∈ [0, t ]) is the smallestσ -field with respect to whichWs is measurable for everys ∈ [0, t ] andZ = {E ⊆
Ä; ∃G ∈ F , E ⊆ G,P(G) = 0} denotes the set ofP-null events. It is well known that the augmented filtration
is continuous and thatW is still a Brownian motion with respect to it (Karatzas and Shreve 1987, Corollary 2.7.8.
and Proposition 2.7.9).

All the stochastic processes to appear in the sequel are progressively measurable with respect toF, all the
equalities involving random variables are understood to holdPa.s., and the equalities involving stochastic processes
are understood to holddP ⊗ dt a.s. Sometimes we shall refer to the following notion of equality between two
processes: two processesX andY are said to be indistinguishable if{ω, ∃t ∈ [0, T ] Xt (ω) 6= Yt (ω)} is aP-null
set. The same definitions hold for the inequalities.
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Let us consider a small investor whose actions cannot affect market prices and who
can decide at timet ∈ [0, T ] what amountπ i

t of the wealthVt to invest in thei th stock,
i = 1, . . . ,n. In the Merton model (1971), he also chooses his consumptionct (actuallyct is
the positive rate of consumption at timet). Of course, his decisions can only be based on the
current information(Ft ); i.e., the processesπ = (π1, π2, . . . , πn)∗, π0 = V −∑n

i=1π
i ,

andc are predictable. Following Harrison and Pliska (1981), we say a strategy is self-
financing if the wealth processV =∑n

i=0π
i satisfies the equality

Vt = V0+
∫ t

0

n∑
i=0

π i
t

d Pi
t

Pi
t

or, equivalently, if the wealth process satisfies the linear stochastic differential equation
(LSDE)

dVt = rt Vt dt + π∗t (bt − rt 1) dt + π∗t σt dWt

= rt Vt dt + π∗t σt [dWt + θt dt].

In the Merton model the equation becomes

dVt = rt Vt dt − ct dt + π∗t σt [dWt + θt dt].

More precisely,

DEFINITION 1.1. A self-financingtradingstrategy is a pair(V, π), whereV is the market
value andπ = (π1, . . . , πn)∗ is the portfolio process, such that(V, π) satisfies

dVt = rt Vt dt + π∗t σt [dWt + θt dt] ,
∫ T

0
|σ ∗t πt |2 dt < +∞ ,P a.s.(1.3)

The strategy is calledfeasibleif the constraint of nonnegative wealth holds:

Vt ≥ 0, t ∈ [0, T ], P a.s.

REMARK. Generally, the initial wealthx is taken as a primitive, and for an initial endow-
mentx and portfolio processπ there exists a unique (continuous) wealth process that is a
solution of (1.3) with initial valueV0 = x, since the processr is bounded. There exists a
useful one-to-one correspondence between the pair(V0 = x, π) and the trading strategy
(V, π).

To extend this formulation to the Merton model, we choose to introduce the cumulative
amount of consumption between 0 andt , namelyCt =

∫ t
0 cs ds, and still refer to the Merton

model even if the adapted increasing consumption processC is not absolutely continuous.
Instead of a consumption process, this process can sometimes be interpreted as the liquidity
necessary to satisfy some constraints.
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DEFINITION 1.2. A self-financingsuperstrategyis a vector process(V, π,C), whereV
is the market value (or wealth process),π is the portfolio process, andC is the cumulative
consumption process, such that

dVt = rt Vt dt − dCt + π∗t σt [dWt + θt dt] ,
∫ T

0
|σ ∗t πt |2 dt < +∞ , P a.s.,(1.4)

andC is an increasing, right-continuous, adapted process withC0 = 0. The superstrategy
is calledfeasibleif the constraint of nonnegative wealth holds:

Vt ≥ 0, t ∈ [0, T ],P a.s.

1.2. Pricing and Hedging Positive Contingent Claims

Fair Price of Positive Contingent Claims.A European contingent claimξ settled at
timeT is anFT -measurable random variable. It can be thought of as a contract which pays
ξ at maturityT . The arbitrage-free pricing of a positive contingent claim is based on the
following principle: if we start with the price of the claim as initial endowment and invest
it in then+ 1 assets, the value of the portfolio at timeT must be just enough to guarantee
ξ . We follow the presentation of Karatzas and Shreve (1987).

DEFINITION 1.3. Letξ ≥ 0 be a positive contingent claim.

(1) A hedging strategyagainstξ (resp. a superhedging strategy) is a feasible self-
financing strategy(V, π) (resp.(V, π,C)) such thatVT = ξ .

We denote byH(ξ) (resp.H′(ξ)) the class of hedging strategies (resp. superhedg-
ing strategies) againstξ . If H(ξ) (resp.H′(ξ)) is nonempty,ξ is calledhedgeable
(resp.superhedgeable).

(2) The fair price X0 (resp. upper priceX′0) at time 0 of the hedgeable (resp. super-
hedgeable) claimξ is the smallest initial endowment needed to hedgeξ ; i.e.,

X0 = inf{x ≥ 0; ∃ (V, π) ∈ H(ξ) such thatV0 = x},

X′0 = inf{x ≥ 0; ∃ (V, π,C) ∈ H′(ξ) such thatV0 = x}.

These definitions hold forXt at any timet .

If Hypothesis 1.1 is satisfied, for any square-integrable nonnegative claimξ , H(ξ) is
nonempty, and the market is said to becomplete.3 Moreover, the fair price is the market
value of a hedging strategy inH(ξ) (Karatzas and Shreve 1987), as proved in the following
theorem.

3In the case of non-Brownian filtration, the market is incomplete; that is, there exists some contingent claim
ξ for whichH(ξ) is empty. For such a contingent claim the fair price is not defined. However, the setH′(ξ) is
nonempty and the upper price is well defined (El Karoui and Quenez 1991,1995).
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THEOREM1.1. Assume H1.1. Letξ be a positive square-integrable contingent claim.
There exists a hedging strategy(X, π) againstξ such that

d Xt = rt Xt dt + πt
∗σtθt dt + π∗t σt dWt , XT = ξ,(1.5)

and such that the market value X is the fair price and the upper price of the claim.
Let (Ht

s; s ≥ t) be the deflator started at time t; that is,

d Ht
s = −Ht

s [rs ds+ θ∗s dWs] , Ht
t = 1.(1.6)

Then

Xt = E[Ht
Tξ |Ft ] , a.s.(1.7)

Proof. Following Duffie and Epstein (1992a, 1992b), the process

Ht = exp−[
∫ t

0
rs ds+

∫ t

0
θ∗s dWs + 1

2

∫ t

0
|θs|2 ds]

is said to be a deflator; it is also the solution of (1.6) started at time 0. Sincer andθ are
bounded processes, it follows from Novikov’s theorem (Karatzas and Shreve 1987, p. 198)
thatE(H2

T ) < +∞ andE(HTξ) < +∞ for any square-integrable contingent claim. Define
the continuous adapted processX from

Ht Xt = E[HTξ |Ft ] = Mt ,

where M is the continuous version of the uniformly integrable nonnegative martingale
E[Ht

Tξ |Ft ]. From the martingale representation for the Brownian motion (Karatzas and
Shreve 1987, p. 185),M can be represented as a stochastic integral; i.e., there exists a
predictable process(Ut ) such that

Ht Xt = E(HTξ)+
∫ t

0
U ∗s dWs ,

∫ T

0
|Ut |2 dt < +∞ a.s.

Putπt = (σ ∗t )
−1[H−1

t Ut + Xt θt ]. Then Ht Xt = E(HTξ) +
∫ t

0 Hs(π
∗
s σs − Xsθ

∗
s ) dWs.

By Itô’s lemma,(X, π) satisfies the linear BSDE (1.5). Thanks to the continuity of the
processesH andX and to the boundedness ofθ , we can show that

∫ T
0 |σ ∗t πt |2 dt < +∞

a.s. So(X, π) is a hedging strategy againstξ with X0 = E(HTξ).
It remains to show thatX0 (resp.Xt ) is the upper price (resp. the smallest superhedging

strategy). Let(V, ϕ,C) be a superhedging strategy againstξ . Again using Itô’s lemma
for the product of the RCLL semimartingaleV and the continuous semimartingaleH and
using (1.4), we have that(Ht Vt )t∈[0,T ] is a positive local supermartingale with decomposition
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d Ht Vt = −Ht dCt + (U V
t )
∗ dWt , whereU V

t = Ht [−Vt θt + (σ ∗t )ϕt ]. Hence, by Fatou’s
lemma,(Ht Vt )t∈[0,T ] is a positive supermartingale and

Ht Vt ≥ E[HT VT |Ft ] = Ht Xt , V0 ≥ E(HTξ) = X0.(1.8)

REMARK. MARTINGALE MEASURE. Recall that (1.7) corresponds to the well-known prop-
erty that the fair price ofξ can be evaluated as the expectation of the discounted value of the
claim under the so-called risk-neutral probability measure or martingale measure (Harrison
and Pliska 1981); that is,

Xt = EQ[e−
∫ T

t
rs ds

ξ |Ft ],

whereQ is the risk-neutral probability measure with Radon-Nikodym derivative with re-
spect toP onFT , given by

dQ
dP
= exp−

[∫ T

0
θ∗s dWs + 1

2

∫ T

0
|θs|2 ds

]
.

Notice thatQ is well defined as a probability measure since, by assumption,θ is bounded.
Moreover,Q is a martingale measure; that is, the discounted wealth processes areQ-local
martingales.

Arbitrage Opportunity and Uniqueness of the Hedging Strategies.We have defined a
hedging strategy against a positive contingent claimξ as a positive solution(V, π) (Vt ≥ 0)
of the equation

dVt = rt Vt dt + πt
∗σtθt dt + π∗t σt dWt , VT = ξ.(1.9)

Recall that, by definition, anarbitrage opportunityis a self-financing strategy(V, π) with
freelunch, that is,V0 = 0, VT ≥ 0, andP(VT > 0) > 0. Notice that a hedging strategy
againstξ ≥ 0 and, more generally, any feasible (positive) self-financing strategy cannot be
an arbitrage opportunity since ifVT ≥ 0 andP(VT > 0) > 0, thenV0 ≥ E(HT VT ) > 0 by
(1.8). If the positivity assumption on(Vt , 0≤ t < T) is relaxed, the self-financing strategy
can be an arbitrage opportunity. An example of such a strategy is given below.

EXAMPLE. By using one of Dudley’s results (Dudley 1977 or Karatzas and Shreve 1987,
p. 189), we can construct a predictable processψ such that

∫ T

0
ψ∗t dWt = 1, 0<

∫ T

0
|ψt |2 dt < +∞ a.s.

Put HtYt =
∫ t

0 ψs dWs andφt = (σ ∗t )
−1[H−1

t ψt + Yt θt ]. The strategy(Y, φ) is a self-



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 9

financing strategy with initial endowment 0 and final valueH−1
T . It is an arbitrage oppor-

tunity.
Using that arbitrage opportunity, we build an infinite number of self-financing strategies

(not positive) which hedgeξ at time T , that is, an infinite number of solutions of the
linear BSDE (1.9). From the pricing formula (1.7) we derive thatH−1

t is the fair price
at time t of the contingent claimH−1

T with hedging portfolioH−1
t (σ ∗t )

−1θt . So the pair
(X0, π0) = (H−1−Y, H−1(σ ∗)−1θ−φ) is a self-financing strategy with initial endowment
1 and terminal value 0 (such a strategy is called a “suicide strategy” by Harrison and Pliska
1981). This pair satisfies the following BSDE:

d X0
t = rt X

0
t dt + π0

t
∗
σtθt dt + (π0

t )
∗σt dWt , X0

T = 0.

Let (X, π) be a solution of the LBSDE (1.9). Then for eachλ the pair(X+λX0, π +λπ0)

is also a solution of (1.9). So there exists an infinite number of solutions of LBSDE (1.9).
Nonuniqueness for the LBSDE holds in general. Furthermore, notice that the value at 0 of
the strategy(X + λX0, π + λπ0) is equal toX0+ λ. Hence, if such strategies are allowed
to hedge againstξ , then the fair price forξ cannot be defined.

Instead of introducing a positivity assumption on the present value of the self-financing
strategies, an alternative is to impose some integrability constraints on the strategies. In
Section 2, according to the results of Pardoux and Peng (1990), we prove that, under
assumption H1.1, (1.9) has a unique solution(X, π) such thatE

∫ T
0 |σ ∗t πt |2 dt < +∞.

If we consider only square-integrable, self-financing strategies, there exists no arbitrage
opportunity. Moreover, for a square-integrable contingent claim, there exists a unique
square-integrable hedging strategy.

For a complete study of the different formulations of arbitrage opportunities, see the
seminal papers of Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983), and
the papers of Delbaen and Schachermayer (1994a, 1994b). Important contributions to this
problem can be found in Stricker (1990), Back and Pliska (1987, 1991), Delbaen (1992),
Jacka (1994), and many others listed in the references.

1.3. Constrained Portfolios

Recently, in studying the pricing of contingent claims with constraints on the wealth or
portfolio processes, many authors have introduced some nonlinear backward equations for
the fair price of claims. We present a few examples.

EXAMPLE 1.1. HEDGING CLAIMS WITH HIGHER INTEREST RATE FOR BORROWING. Bergman
(1991), Korn (1992), and Cvitanic and Karatzas (1993) consider the following problem:
the investor is allowed to borrow money at timet at an interest rateRt > rt , wherert is
the bond rate (R is assumed to be predictable and bounded). It is not reasonable to borrow
money and to invest money in the bond at the same time. Therefore, we restrict ourselves
to policies for which the amount borrowed at timet is equal to(Vt −

∑n
i=1π

i
t )
−. Then the

strategy (wealth, portfolio)(V, π) satisfies

dVt = rt Vt dt + π∗t σtθt dt + π∗t σt dWt − (Rt − rt )

(
Vt −

n∑
i=1

π i
t

)−
dt.(1.10)
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Given an inital investmentV0 = x and a risky portfolioπ , there exists a unique solution to
this forward stochastic differential equation with Lipschitz coefficients. The fair price (resp.
upper price) of a claim is still defined as the minimal endowment to finance a strategy which
guaranteesξ at timeT . According to the results of Pardoux and Peng 1990 (Section 2),
there exists a unique square-integrable strategy(X, π) which is a solution of the nonlinear
backward stochastic differential equation, where the nonlinear term depends on both wealth
and portfolio:

d Xt = rt Xt dt + π∗t σtθt dt(1.11)

−(Rt − rt )(Xt −
n∑

i=1

π i
t )
− dt + π∗t σt dWt , XT = ξ,

with E
∫ T

0 |π∗t σt |2 dt < +∞. FurthemoreXt is the fair price and the upper price ofξ at
time t .

Similar equations appear in continuous trading with short-sales constraints with different
risk premia for long and short positions (Jouini and Kallal 1995a, 1995b; He and Pearson
1991). Letθ1 − θ2 be the difference in excess return between long and short positions in
the stocks. Then the present valueV of the portfolio strategyπ must satisfy

dVt = rt Vt dt + π∗t σtθ
1
t dt + [π∗t ]−σt [θ

1
t − θ2

t ] dt + π∗t σt dWt .(1.12)

Let us suppose thatθ1 andθ2 are bounded, predictable processes. Given an initial endow-
mentx and a portfolio strategyπ there exists a unique solution to this forward equation.
Conversely, from the results stated in Section 2, we have that, given a square-integrable
contingent claim, there exists a unique square-integrable solution(X, σ ∗π) of the BSDE

d Xt = rt Xt dt + π∗t σtθ
1
t dt + [π∗t ]−σt [θ

1
t − θ2

t ] dt + π∗t σt dWt , XT = ξ.

Here Xt is the fair price and the upper price of the claimξ at time t . In Section 3.3 we
develop a general pricing theory for contingent claims with respect to convex constrained
portfolios.

EXAMPLE 1.2. HEDGING CLAIMS IN INCOMPLETE MARKETS. In this section we suppose
that only some securities can be traded, and the hedging portfolios can be built by using
only these primary securities. In this case the market is incomplete; that is, it is not
always possible to replicate a payoff by a controlled portfolio of the basic securities. The
assumption that the set of superhedging strategies is nonempty is much milder. Under this
assumption, El Karoui and Quenez (1991,1995) showed that there exists an upper price
process(Xt )t∈[0,T ] for a contingent claimξ and gave a characterization. This process does
not correspond exactly to the solution of a BSDE, but it can be obtained as the increasing limit
of a sequence of processes(Xk

t )t∈[0,T ] associated with the solutions of nonlinear BSDEs. In
that paper a general filtration was considered, but here, for expository simplicity, we restrict
our presentation to a Brownian filtration.

More precisely, in this market only some securities, the firstj ones (j ≤ n), can be
traded, and the hedging portfolios can be built by using only these primary securities. The
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j × n volatility matrix of the primary securities is denoted byσ 1 = (σ i,k)1≤i≤ j,1≤k≤n, and
the volatility matrix of the others is denoted byσ 2. Hence the volatility matrixσ of the set
of market securities can be decomposed at timet as

σt =
(
σ 1

t
σ 2

t

)
.

Notice that the matrix(σ 1
t )
∗ has full rank because the global matrix(σt )

∗ has full rank, so
the matrixσ 1

t (σ
1
t )
∗ is invertible. The amount of a general portfolioπt invested at timet in

the primary securities is denoted by1πt and the amount in the others is denoted by2πt so
that

π∗t σt = (1πt )
∗σ 1

t + (2πt )
∗σ 2

t .

So an admissible hedging portfolio is to be constrained to(2πt ) = 0. Hence it satisfies
π∗t σt = (1πt )

∗σ 1
t , and the admissible wealthV is modeled by

dVt = rt Vt dt + (1πt )
∗σ 1

t (dWt + θt dt).

This equation is unchanged ifθ is replaced by the “minimal risk premium”θ1 defined at
time t as the orthogonal projection ofθt onto the range of(σ 1

t )
∗ sinceθt − θ1

t belongs to
the kernel ofσ 1

t . Notice that classical results from linear algebra allow us to give a closed
formula forθ1, namely

θ1
t = (σ 1

t )
∗[(σ 1

t )(σ
1
t )
∗]−1σ 1

t θt .(1.13)

In what follows we suppose the processθ1 to be bounded.
Given a square-integrable contingent claimξ , there does not necessarily exist a hedging

portfolio built on the primary securities to financeξ . In others words, the BSDE

d Xt = rt Xt dt + (1πt )
∗σ 1

t [dWt + θ1
t dt] , XT = ξ,

can have no solution. Consequently, it is interesting to study the upper price forξ given by

X0 = inf{x ; ∃(V, π,C) ∈ H′1(ξ);V0 = x},

whereH′1(ξ) is the set of the superstrategies which only depend on the primary securities;
that is,

H′1(ξ) = {(V, π,C);VT = ξ, dVt = rt Vt dt + (1πt )
∗σ 1

t [dWt + θ1
t dt] − dCt ;Vt ≥ 0}.

Suppose thatH′1(ξ) is nonempty. Then the upper price is well defined and is achieved by
a superhedging strategy. This property can be proved by a duality argument.
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Let K 1 be the subspace of bounded and predictable processes which take values in the
kernel ofσ 1; that is,

K 1 = {β; σ 1
t βt = 0, a.s.t ∈ [0, T ]; ∃B > 0, |βt | ≤ B

}
.

We strongly penalize the presence of assets( j+1, . . . ,n) in the general replicating strategies
by introducing a risk premiumβ ∈ K 1. The correspondingβ-hedging strategy(Vβ, πβ)

is the solution of the BSDE

dVβ
t = rt V

β
t dt + (πβt )∗σt [dWt + θ1

t dt + βt dt] , VT = ξ.

In the terminology of Karatzas et al. (1989),(Vβ, πβ) is the fair price forξ in a fictitious
market, which completes the initial market.

DefineX as the right-continuous, left-limited (RCLL) process which satisfies

Xt = ess sup{Vβ
t ;β ∈ K 1} , P a.s.(1.14)

El Karoui and Quenez (1995) showed that the processX is the upper price and thatX is the
market value of an admissible superhedging strategy; i.e., there exist a portfolio process1π

and a consumption processC such that

d Xt = rt Xt dt + (1πt )
∗σ 1

t [dWt + θ1
t dt] − dCt , XT = ξ.(1.15)

The processX can be approximated by the continuous processes (Xk) satisfying, fork ∈ N,

Xk
t = ess sup{Vβ

t ; |β| ≤ k , β ∈ K 1} , P a.s.(1.16)

We prove (see Section 3) that, since

dVβ
t = rt V

β
t dt + (πβt )∗σtβt dt + (πβt )∗σt [dWt + θ1

t dt] , Vβ

T = ξ,
d Xk

t = rt X
k
t − sup

β∈K 1; |β|≤k
[(−πk

t )
∗σtβ] dt + (πk

t )
∗σt [dWt + θ1

t dt] , Xk
T = ξ.

Because supβ∈K 1 ; |β|≤k(−π∗t σtβ) = k||Projt (σ
∗
t πt )||, where Projt denotes the orthogonal

projection onto the kernel ofσ 1
t ,

d Xk
t = rt X

k
t − k||Projt (σ

∗
t π

k
t )|| dt + (πk

t )
∗σt [dWt + θ1

t dt] , Xk
T = ξ.

The strategies(Xk, πk) can also be considered as penalized strategies. The penalizing
process given byk

∫ t
0 ||Projs(σ

∗
s π

k
s )|| ds has an intensity proportional to the length of the

nonadmissible part of(σ ∗s π
k
s ). The larger this length, the more the local “variance” of the
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nonadmissible part of
∫ t

0 (π
k
s )
∗σs dWs is large and the more the penalty is expensive. Notice

that the penalizing process only depends on Projt ((σ
2
t )
∗(2πt )) = Projt ((σt )

∗(πt )).
By Pardoux and Peng’s results on nonlinear BSDEs that we recall in Section 2, these

equations admit a unique square-integrable solution(Xk, πk). By the comparison theorem
for BSDEs, we can show that the sequence of the processesXk is increasing, and by using
their interpretation as a value function of a control problem, it follows that their limit is
equal toX.

Notice that these solutions are obtained as the value functions of a control problem
associated with the fair prices for the claim in fictitious markets. We shall see in Section 3
that this property is very general and results from the convexity of the function Projt (·).

Cvitanic and Karatzas (1993) studied this methodology for very general constraints on
the portfolio in a Brownian market and obtained similar approximations for the upper price
of contingent claimξ . Bardhan (1993) also studied some problems in this area. More
recently, Kramkov (1994) and F¨ollmer and Kabanov (1995) extended this methodology to
a general arbitrage-free asset pricing setting in incomplete markets without restrictions on
the filtration.

EXAMPLE 1.3. FÖLLMER-SCHWEIZER HHEDGING STRATEGY IN INCOMPLETE MARKETS.
The model and the notation are the same as in Example 1.2. Letξ be a square-integrable
contingent claim. In this context a strategy(V,1π, φ), is called anonadjusted hedging
strategyagainstξ when

dVt = rt Vt dt + (1πt )
∗σ 1

t [dWt + θt dt] + dφt , VT = ξ,(1.17)

where the processφ is a RCLL semimartingale satisfyingφ0 = 0. The process(−φt ) is
called thetracking error. In particular, at the terminal time the tracking error measures the
spread between the contingent claimξ and the portfolio value, andφ corresponds to the cost
process introduced by F¨ollmer and Schweizer (1990). Notice that a self-financing hedging
strategy corresponds to a tracking error equal to zero and that a superhedging strategy
corresponds to an increasing tracking error. Ifφ is a martingale orthogonal to

∫ .
0 σ

1
s dWs, it

will be called a F¨ollmer-Schweizer hedging strategy. Again, we remark that this equation
is unchanged ifθ is replaced by the “minimal risk premium”θ1. More precisely,

DEFINITION 1.5. A strategy(X,1π,M) is called aFöllmer-Schweizer hedging strategy
(or FS-strategy) if1π is a j-dimensional predictable process such thatE(

∫ T
0 |(σ 1

s )
∗(1πt )|2dt)

< +∞ and if M is a square-integrable martingale orthogonal to
∫ .

0 σ
1
s dWs such that

d Xt = rt Xt dt + (1πt )
∗σ 1

t [dWt + θt dt] + d Mt , XT = ξ.

REMARK. Such strategies were first introduced by F¨ollmer and Sondermann (1986).
Initially, the problem is to find a strategy with minimal variance for the tracking error,
but it is rather complicated. In the caser = 0 andθ = 0 (that is,P is a martingale
measure) considered by F¨ollmer and Sondermann, it is easy to see that the tracking error
of the minimal variance strategy is a martingale (such a strategy is said to be mean-self-
financing); actually, the minimal variance tracking error is characterized to be a martingale
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process orthogonal to
∫ .

0 σ
1
s dWs. If θ 6= 0 the situation is more subtle. Schweizer (1991)

introduced a criterion of local risk minimization and showed that a nonadjusted hedging
strategy is locally risk minimizing if the associated tracking error is a martingale orthogonal
to
∫ t

0 σ
1
s dWs. New developments in this area include Ansel and Stricker (1992a,1992b),

Schweizer (1992, 1994a, 1994b), Delbaen et al. (1994), and Monat and Stricker (1995).
Recall that in their paper, F¨ollmer and Schweizer (1990) characterized the FS-strategy in

a different framework: there exists only one primary risky security, and the price process of
this unique basic security is supposed to be any continuous square-integrable semimartin-
gale. Actually, the arbitrage-free hypothesis implies that it can be writtenNt +

∫ t
0 αs d〈N〉s

for some continuous square-integrable martingaleN with quadratic variation〈N〉 and some
predictable processα.

Indeed, the FS-strategy is simply given by the solution of a linear BSDE.

PROPOSITION1.1. Let (X, ψ) be the hedging strategy againstξ in a market with the
“minimal risk premium” θ1; that is,

d Xt = rt Xt dt + ψ∗t σtθ
1
t dt + ψ∗t σt dWt , XT = ξ.(1.18)

Put qt = σ ∗t ψt . Let q1
t (resp. q2

t ) be the orthogonal projection of qt onto the range of(σ 1
t )
∗

(resp. the kernel ofσ 1
t ). Let 1πt be the vector process such that(σ 1

t )
∗(1πt ) = q1

t , given in
closed form by1πt = [σ 1

t (σ
1
t )
∗]−1σ 1

t qt . Put Mt =
∫ t

0 (q
2
s )
∗dWs. Then(X,1π,M) is the

unique FS-strategy associated withξ . In other words, the FS-strategy corresponds to the
hedging strategy in a fictitious market with no penalizing risk premium (β = 0).

Proof. Let (X, ψ) be the square-integrable hedging strategy againstξ , in a market with
the risk premium vectorθ1, and putqt = σ ∗t ψt . Project the vectorqt orthogonally onto the
range of(σ 1

t )
∗, so

qt = q1
t + q2

t whereq1
t ∈ Range((σ 1

t )
∗) andq2

t ∈ Ker(σ 1
t ).

Let 1πt be the vector process satisfyingq1
t = (σ 1

t )
∗(1πt ) (notice that1πt is unique since the

matrix (σ 1
t )
∗ is full rank). We haveq∗t θ

1
t = (q1

t )
∗θ1

t = (q1
t )
∗θt . Put Mt =

∫ t
0 (q

2
t )
∗ dWs.

M is a martingale orthogonal to
∫ .

0 σ
1
s dWs, and(X, 1π,M) is an FS-strategy.

Conversely, let(X̂, (1π̂), M̂) be an FS-strategy. Let̂q2
t be such that̂Mt =

∫ t
0 (̂q

2
t )
∗ dWs

and put̂qt = (σ 1
t )
∗(1π̂t ) + q̂2

t , andψ̂t = (σ ∗t )
−1q̂t . Then(X̂, ψ̂) is a solution of BSDE

(1.18), and it follows from the uniqueness of the solution of a BSDE that the FS-strategy is
unique.

REMARK 1.1. Suppose that the matrixσ 1
t (σ

2
t )
∗ is the null matrix; that is, the nonprimary

securities do not introduce supplementary risk on the admissible portfolios. Then the FS-
strategy consists of holding the amount1πt = [σ 1

t (σ
1
t )
∗]−1σ 1

t (σ
1
t )
∗(1ψ)t = (1ψ)t in the

primary securities. Moreover, by uniqueness the FS-strategy does not depend on the matrix
σ 2. Consequently, the simplest way to compute the FS-strategy is to complete the “primary”
market by introducing other securities whose volatility matrix satisfiesσ 1

t (σ
2
t )
∗ = 0, a.s.



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 15

REMARK 1.2. LetQ1 be the martingale measure associated withθ1. Using the same
arguments as in the proof of Theorem 1.1, it follows directly from Proposition 1.1 that
Xt is the conditional expectation of the discounted contingent claim computed under the
martingale measureQ1.

Let us show thatQ1 is the minimal martingale measure (El Karoui and Quenez 1995,
Proposition 1.8.2) first introduced by F¨ollmer and Schweizer (1990) as a martingale mea-
sure such that any boundedP-martingale orthogonal to the martingale

∫ .
0 σ

1
s dWs remains a

boundedQ1-martingale. Indeed, using the same arguments as in the proof of Theorem 1.1,
we derive that a bounded, continuous processX which is also aQ1-local martingale corre-
sponds to the square-integrable solution(X, ψ) of BSDE (1.18) with r = 0 andξ = XT .
Now suppose thatX′ is aP-martingale orthogonal to the martingale

∫ .
0 σ

1
s dWs. ThenX′ is

the stochastic integral of a processq′ in the kernel ofσ 1. So(q′t )
∗θ1

t = 0 and(X′, (σ ∗)−1q′)
is a solution of the BSDE (1.18) with r . = 0, soX′ is aQ1-local martingale.

1.4. Recursive Utility

In the continuous-time, deterministic case, recursive utilities were first (to our knowledge)
introduced by Epstein and Zin (1989). Let us consider a small agent who can consume
between time 0 and timeT . Let ct be the (positive) consumption rate at timet . We assume
that there exists a terminal rewardY at timeT . The utility at timet is a function of the
instantaneous consumption ratect and of the future utility (corresponding to the future
consumption). In fact, the recursive utilityY is assumed to satisfy the following differential
equation:

− dYt = f (ct ,Yt ) dt , YT = Y.(1.19)

The function f is calledthe generator. Thus, at time 0 the utility of the consumption path
(ct , 0≤ t ≤ T) is

Y0 = Y +
∫ T

0
f (cs,Ys) ds.

Under uncertainty, Duffie and Epstein (1992a, 1992b) (see also Duffie, Geoffard, and
Skiadias 1992) introduced the following class of recursive utilities:

− dYt =
[

f (ct ,Yt ) − A(Yt )
1
2 Z∗Zt

]
dt − Z∗t dWt , YT = Y,(1.20)

whereA is the “variance multiplier.” We can give another representation of the utility at
time t of the future consumption(cs; t ≤ s ≤ T):

Yt = E

[
Y +

∫ T

t
[ f (cs,Ys) − A(Ys)

1
2 Z∗s Zs] ds|Ft

]
.

Because of their economic motivations, we provide the following examples of recursive
utilities, following Duffie and Epstein (1992a).
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Examples.
• Standard additive utility. The generator of the standard utility is

f (c, y) = u(c)− β y,

The recursive utility is

Yt = E

[
Y e−β(T−t) +

∫ T

t
u(cs) e−β(s−t) ds|Ft

]
.

• Uzawa utility. The generator has the same form as additive utility, but the discounting
rateβ depends on the consumption ratect :

f (c, y) = u(c)− β(c)y.

• Kreps-Porteus utility. Let 0 6= ρ ≤ 1 and 0≤ β. The generator is defined by

f (c, y) = β

ρ

cρ − yρ

yρ−1
.

In general, utilities must satisfy the following classical properties:

• Monotonicity with respect to the terminal value and to the consumption.
• Concavity with respect to the consumption.
• Time consistency: this means that, for any two consumption processesc1 andc2 and

any timet , if c1 andc2 are identical up to timet and if the continuation ofc1 is
preferred to the continuation ofc2 at timet , thenc1 is preferred toc2 at time 0.

Duffie and Epstein (1992a) showed that iff is Lipschitz with respect toy, then

−dYt = f (t, ct ,Yt ) dt − Z∗t dWt , YT = Y,

has a unique solution. Also, they state that iff is concave with respect to(c, y) and
increasing with respect toc, the above properties are satisfied.4

We will consider a more general class of recursive utilities, defined as associated with
the solution of a general BSDE

− dYt = f (t, ct ,Yt , Zt ) dt − Z∗t dWt , YT = Y,(1.21)

with concave generatorf . The existence and uniqueness of solutions of (1.21) are proved in
Section 2. Also, the above properties are obtained as direct consequences of a comparison

4More recently, Duffie and Singleton (1994) and Duffie and Huang (1994) have used this type of BSDE to
solve some pricing problems.
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theorem. The main result stated in Section 3 is the interpretation of recursive utility as the
value function of a control problem.

2. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

A linear backward stochastic differential equation was introduced by Bismut (1973) as
the equation for the conjugate variable (or adjoint process) in the stochastic version of the
Pontryagin maximum principle. Other works on the maximum principle were also done
using linear BSDEs by Arkin and Saksonov (1979), Kabanov (1978), and Cadenillas and
Karatzas (1995). Bismut (1978) introduced a nonlinear BSDE (a Riccati equation) for
which he showed existence and uniqueness. Pardoux and Peng (1990) were the first to
consider general BSDEs.

Several papers extended their results, particularly Antonelli (1993), Ma, Protter, and
Yong (1994), Buckdahn (1993), Buckdahn and Pardoux (1994), and, of course, Pardoux
and Peng (1990,1992,1993) and Peng (1990, 1991, 1992a, 1992b, 1992c, 1993).

In this section we present some important results for BSDEs. First we state some a priori
estimates of the spread between the solutions of two BSDEs, from which we derive the
results of existence and uniqueness. Then we give different properties concerning BSDEs.
In particular, we study one-dimensional linear BSDEs which are classical in finance, for
which we state a comparison theorem.

First we fix some notation. Forx ∈ Rd, |x| denotes its Euclidian norm and〈x, y〉 denotes
the inner product. Ann× d matrix will be considered as an elementy ∈ Rn×d; note that
its Euclidean norm is also given by|y| = √trace(y y∗) and that〈y, z〉 = trace(yz∗).

Given a probability space(Ä,F ,P) and anRn-valued Brownian motionW, we consider

• {(Ft ); t ∈ [0, T ]}, the filtration generated by the Brownian motionW and augmented,
andP theσ -field of predictable sets ofÄ× [0, T ].

• L2
T (Rd), the space of allFT -measurable random variablesX: Ä 7→ Rd satisfying
||X||2 = E(|X|2) < +∞.

• H2
T (Rd), the space of all predictable processesφ: Ä× [0, T ] 7→ Rd such that||ϕ||2 =

E
∫ T

0 |ϕt |2 dt < +∞.
• H1

T (Rd), the space of all predictable processesφ: Ä × [0, T ] 7→ Rd such that

E
√∫ T

0 |ϕt |2 dt < +∞.
• Forβ > 0 andφ ∈ H2

T (Rd), ||φ||2β denotesE
∫ T

0 eβt |φt |2 dt. H2
T,β(Rd) denotes the

spaceH2
T (Rd) endowed with the norm|| · ||β .

For notational simplicity we sometimes useL2
T (Rd) = L2,d

T ,H2
T (Rd) = H2,d

T ,H1
T (Rd) =

H1,d
T , andH2

T,β(Rd) = H2,d
T,β .

2.1. Existence and Uniqueness of Backward Stochastic Differential Equations

The Main Result. Consider the BSDE

− dYt = f (t,Yt , Zt ) dt − Z∗t dWt , YT = ξ,(2.1)
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or, equivalently,

Yt = ξ +
∫ T

t
f (s,Ys, Zs) ds −

∫ T

t
Z∗sdWs,(2.2)

where

• The terminal value is anFT -measurable random variable,ξ : Ä 7→ Rd.

• The generatorf mapsÄ×R+×Rd×Rn×d ontoRd and isP⊗Bd⊗Bn×d-measurable.

A solutionis a pair(Y, Z) such that{Yt ; t ∈ [0, T ]} is a continuousRd-valued adapted
process and{Zt ; t ∈ [0, T ]} is anRn×d-valued predictable process satisfying

∫ T
0 |Zs|2 ds<

+∞, P a.s.
Suppose thatξ ∈ L2

T (Rd), f (·, 0, 0) ∈ H2
T (Rd), and f is uniformly Lipschitz; i.e., there

existsC > 0 such thatdP⊗ dt a.s.

| f (ω, t, y1, z1)− f (ω, t, y2, z2)| ≤ C (|y1− y2| + |z1− z2|) ∀(y1, z1), ∀(y2, z2).

Then( f, ξ) are said to bestandardparameters for the BSDE.

THEOREM2.1 (Pardoux-Peng 1990). Given standard parameters( f, ξ), there exists a
unique pair(Y, Z) ∈ H2

T (Rd)×H2
T (Rn×d) which solves (2.1).

We often refer to such a solution as a square-integrable solution. A proof can be found
in Pardoux and Peng (1990). We give here a shorter direct proof using useful a priori
estimates.

A Priori Estimates.

PROPOSITION2.1. Let (( f i , ξ i ); i=1,2) be two standard parameters of the BSDE and
((Yi , Zi ); i=1,2) be two square-integrable solutions. Let C be a Lipschitz constant for f1,
and putδYt = Y1

t −Y2
t andδ2 ft = f 1(t,Y2

t , Z2
t )− f 2(t,Y2

t , Z2
t ). For any(λ, µ, β) such

thatµ > 0, λ2 > C, andβ ≥ C(2+ λ2)+ µ2, it follows that

||δY||2β ≤ T

[
eβTE(|δYT |2)+ 1

µ2
||δ2 f ||2β

]
,(2.3)

||δZ||2β ≤
λ2

λ2− C

[
eβTE(|δYT |2)+ 1

µ2
||δ2 f ||2β

]
.(2.4)

Proof. Let (Y, Z) ∈ H2
T (Rd)×H2

T (Rn×d) be a solution of (2.1). Using (2.2), we derive
that

|Yt | ≤ |ξ | +
∫ T

0
| f (s,Ys, Zs)| ds + sup

t

∣∣∣∣∫ T

t
Z∗s dWs

∣∣∣∣ .
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It follows from Burkholder–Davis–Gundy inequalities (Karatzas and Shreve 1987, Theo-
rem 3.28) that

E
[
sup

t
|
∫ T

t
Z∗s dWs|2

]
≤ 2E

[
|
∫ T

0
Z∗s dWs|2

]
+ 2E

[
sup

t
|
∫ t

0
Z∗s dWs|2

]
≤ 4E

[∫ T

0
|Zs|2 ds

]
.

Now since( f, ξ) are standard parameters,|ξ | + ∫ T
0 | f (s,Ys, Zs)| ds belongs toL2,1

T and
sups≤T |Ys| ∈ L2,1

T .
Now consider(Y1, Z1) and (Y2, Z2), the two solutions associated with (f 1, ξ1) and

( f 2, ξ2), respectively. From Itˆo’s formula applied froms= t tos= T to the semimartingale
eβs|δYs|2, it follows that

eβt |δYt |2+ β
∫ T

t
eβs|δYs|2 ds+

∫ T

t
eβs|δZs|2 ds

= eβT |δYT |2+ 2
∫ T

t
eβs〈δYs, f 1(s,Y1

s , Z1
s)− f 2(s,Y2

s , Z2
s)〉 ds

− 2
∫ T

t
eβs〈δYs, δZ∗s dWs〉.

Since sups≤T |δYs| belongs toL2,1
T , eβsδZs δYs belongs toH1,n

T and the stochastic integral∫ T
t eβs〈δYs, δZ∗s dWs〉 is P-integrable, with zero expectation. Moreover,

| f 1(s,Y1
s , Z1

s)− f 2(s,Y2
s , Z2

s)| ≤ | f 1(s,Y1
s , Z1

s)− f 1(s,Y2
s , Z2

s)| + |δ2 fs|
≤ C[|δYs| + |δZs|] + |δ2 fs| .

The inequality 2y(Cz+ t) ≤ Cz2/λ2+ t2/µ2+ y2(µ2+ Cλ2) (λ, µ > 0) implies

E[eβt |δYt |2] + βE
[∫ T

t
eβs|δYs|2 ds+

∫ T

t
eβs|δZs|2 ds

]
(2.5)

≤ E[eβT |δYT |2] + E
∫ T

t
eβs[C|δYs|2(2+ λ2)

+ C
|δZs|2
λ2
+ |δ2 fs|2

µ2
+ µ2|δYs|2] ds

≤ E[eβT |δYT |2] + [C(2+ λ2)+ µ2]E
∫ T

t
eβs|δYs|2 ds

+ C

λ2
E
∫ T

t
eβs|δZs|2 ds+ 1

µ2
E
∫ T

t
eβs|δ2 fs|2 ds.
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Choosingβ ≥ C(2+ λ2)+ µ2 andC < λ2, these inequalities give

E[eβt |δYt |2] ≤ E[eβT |δYT |2] + E
∫ T

t
eβs|δ2 fs|2 1

µ2
ds.

We obtain the control of the norm of the processδY by integration. Then the control of the
norm of the processδZ follows by inequality (2.5).

REMARKS. (a) In the control of the norm ofδY, we can replaceT by inf(T, [β − (C(2+
λ2)+ µ2)]−1).

(b) By classical results on the norms of semimartingales, we prove similarly that

E[sup
t≤T
|δYt |2] ≤ KE

[
|δYT |2+

∫ T

0
|δ2 ft |2 dt

]
,

whereK is a positive constant only depending onT .

Proof of Theorem 2.1. We use a fixed-point theorem for the mapping fromH2
T,β(Rd)×

H2
T,β(Rn×d) into H2

T,β(Rd) × H2
T,β(Rn×d), which maps(y, z) onto the solution(Y, Z) of

the BSDE with generatorf (t, yt , zt ); i.e.,

Yt = ξ +
∫ T

t
f (s, ys, zs) ds−

∫ T

t
Z∗s dWs .

Let us remark that the assumption that( f, ξ) are standard parameters implies that
( f (t, yt , zt ); t ∈ [0, T ]) belongs toH2

T (Rd). The solution(Y, Z) is defined by considering
the continuous versionM of the square-integrable martingaleE[

∫ T
0 f (s, ys, zs) ds+ ξ |Ft ].

By the martingale representation theorem for the Brownian motion (Karatzas and Shreve
1987, Theorem 4.15) there exists a unique integrable processZ ∈ H2,n×d

T such that
Mt = M0 +

∫ t
0 Z∗s dWs. Define the adapted and continuous processY by Yt = Mt −∫ t

0 f (s, ys, zs) ds. Notice thatY is also given by

Yt = E
[∫ T

t
f (s, ys, zs) ds+ ξ |Ft

]
.

The square integrability ofY follows from the above assumptions.
Let (y1, z1), (y2, z2) be two elements ofH2,d

T,β × H2,n×d
T,β , and let(Y1, Z1) and(Y2, Z2)

be the associated solutions. By Proposition 2.1 applied withC = 0 andβ = µ2, we obtain

||δY||2β ≤
T

β
E
∫ T

0
eβs| f (s, y1

s , z
1
s)− f (s, y2

s , z
2
s)|2 ds
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and

||δZ||2β ≤
1

β
E
∫ T

0
eβs| f (s, y1

s , z
1
s)− f (s, y2

s , z
2
s)|2 ds.

Now since f is Lipschitz with constantC, we have

||δY||2β + ||δZ||2β ≤
2(1+ T)C

β
[||δy||2β + ||δz||2β ].(2.6)

Choosingβ > 2(1+T)C, we see that this mapping8 is a contraction fromH2,d
T,β ×H2,n×d

T,β

onto itself and that there exists a fixed point,5 which is the unique continuous solution of
the BSDE.

From the proof of Proposition 2.1 (and more precisely from estimate (2.6)), we derive
that the Picard iterative sequence converges almost surely to the solution of the BSDE.

COROLLARY 2.1. Let β be such that2(1+ T)C < β. Let (Yk, Zk) be the sequence
defined recursively by(Y0 = 0; Z0 = 0) and

− dYk+1
t = f (t,Yk

t , Zk
t ) dt − (Zk+1

t )∗ dWt , Yk+1
T = ξ .(2.7)

Then the sequence(Yk, Zk) converges to(Y, Z), dP ⊗ dt a.s. (and inH2
T,β(Rd) ×

H2
T,β(Rn×d)) as k goes to+∞.

Proof. Let (Yk, Zk) be the sequence defined recursively by (2.7). Then by (2.6),

||Yk+1− Yk||2β + ||Zk+1− Zk||2β ≤ εkK ,

whereK = ||Y1− Y0||2β + ||Z1− Z0||2β andε = 2(1+ T)C/β < 1. Hence

∑
k

||Yk+1− Yk||2β +
∑

k

||Zk+1− Zk||2β < +∞,

and the result follows.

REMARK. Again forY it is possible to consider the norm|| sups∈[0,T ] |Yk
s −Ys| ||2 instead

of ||Y||β ; consequently we also have that sups∈[0,T ] |Yk
s − Ys| convergesP a.s. to 0.

5Let (Y, Z) be a representation of the fixed point of the mapping8 in the classH2
T,β (Rd)×H2

T,β (Rn×d), and

choose the continuous versionY defined byYt = E[
∫ T

t
f (s,Ys, Zs) ds+ξ |Ft ] = E[

∫ T

t
f (s,Ys, Zs) ds+ξ |Ft ].

Hence,(Y, Z) is a continuous solution of the BSDE.
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Linear BSDE. Theorem 2.1 applied to linear BSDEs specifies the integrability proper-
ties of the solution of the standard pricing problem (Theorem 1.1).

PROPOSITION2.2. Let (β, γ ) be a bounded (R,Rn)-valued predictable process,ϕ an
element ofH2

T (R), andξ an element ofL2
T (R). Then the LBSDE

− dYt = [ϕt + Yt βt + Z∗t γt ] dt − Z∗t dWt , YT = ξ,(2.8)

has a unique solution(Y, Z) inH2
T,β(R)×H2

T,β(Rn) and Yt is given by the closed formula

Yt = E
[
ξ0t

T +
∫ T

t
0t

sϕs ds|Ft

]
P a.s.,(2.9)

where0t
s is the adjoint process defined for s≥ t by the forward LSDE

d0t
s = 0t

s[βs dt s+ γ ∗s dWs] , 0t
t = 1.(2.10)

In particular, if ξ and ϕ are nonnegative, the process Y is nonnegative. If, in addition,
Y0 = 0, then, for any t, Yt = 0 a.s., ξ = 0 a.s., andϕt = 0 dP⊗ dt a.s.

Proof. Sinceβ andγ are bounded processes, the linear generatorf (t, y, z) = ϕt+βt y+
γ ∗t z is uniformly Lipschitz and the pair( f, ξ)are standard parameters. By Theorem 2.1 there
exists a unique square-integrable solution(Y, Z) of the linear BSDE associated with( f, ξ).
By standard calculations similar to those of Section 1.2, it follows that0tYt +

∫ t
0 0sϕs ds

is a local martingale. Now sups≤T |Ys| and sups≤T |0s| belong toL2,1
T and sups≤T |Ys| ×

sups≤T |0s| belongs toL1,1
T . Therefore the local martingale0tYt +

∫ t
0 0sϕs ds is uniformly

integrable and equal to the conditional expectation of its terminal value. In particular, ifξ

andϕ are nonnegative,Yt is also nonnegative. If, in addition,Y0 = 0, then the expectation of
the nonnegative variableξ0T +

∫ T
0 0sϕsds is equal to 0. Soξ = 0,P a.s.,ϕt = 0, dP⊗ dt

a.s., andY = 0 a.s.

REMARK. Recall that in Section 1.2 we constructed various solutions for the LBSDE
which are not square integrable. Nevertheless, all solutions bounded below still satisfy
the positivity property. More precisely, let(X,5) be a solution of (2.8) (not necessarily
square integrable) withXt ≥ −B (B ≥ 0) for any timet , whereB is a square-integrable
FT -measurable variable, and suppose thatξ andϕ are nonnegative. Since(Mt = 0t Xt +∫ t

0 0sϕs ds; t ∈ [0, T ]) is a local martingale, bounded below by the integrable variable
−supt≤T (0t )B, Fatou’s lemma implies thatM is a supermartingale which is minorized
by E[MT |Ft ]. It follows that Xt ≥ 0. (Notice that the square integrability ofϕ is not
needed for this property.) Furthermore, the square-integrable solution of (2.8)(Y, Z) is
the smallest of the solutions(X,5) which are bounded by below by a square-integrable
variable. Indeed, the differenceX − Y is a bounded below by a square-integrable variable
solution of the LBSDE with terminal condition 0 andϕ = 0 a.s., soX − Y is nonnegative.
This property is a mild extension of Theorem 1.1, which will be generalized to the case of
nonlinear BSDEs in Section 2.3.
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2.2. Comparison Theorem

As an immediate consequence of Proposition 2.2, we provide (in the one-dimensional
case) a comparison theorem first obtained by Peng (1992a). Recall that such a property
can be obtained for forward SDEs only under strong assumptions on the coefficients; in
particular, the functions which appear in the coefficients of diffusion must be the same for
the two equations (Karatzas and Shreve 1987).

THEOREM2.2 (Comparison Theorem). Let ( f 1, ξ1) and ( f 2, ξ2) be two standard pa-
rameters of BSDEs, and let(Y1, Z1) and (Y2, Z2) be the associated square-integrable
solutions. We suppose that

• ξ1 ≥ ξ2 P a.s.
• δ2 ft = f 1(t,Y2

t , Z2
t )− f 2(t, Y2

t , Z2
t ) ≥ 0, dP⊗ dt a.s.

Then we have that almost surely for any time t, Y1
t ≥ Y2

t .
Moreover the comparison is strict; that is, if, in addition, Y1

0 = Y2
0 , thenξ1 = ξ2,

f 1(t,Y2
t , Z2

t ) = f 2(t, Y2
t , Z2

t ), dP⊗dt a.s., and Y1 = Y2 a.s. More generally if Y1t = Y2
t

on a set A∈ Ft , then Y1
s = Y2

s almost surely on[t, T ] × A, ξ1 = ξ2 a.s. on A, and
f 1(s,Y2

s , Z2
s) = f 2(s, Y2

s , Z2
s) on A× [t, T ] dP⊗ ds a.s.

Before proving this theorem, we deduce a sufficient condition for the nonnegativity of
the BSDE solution.

COROLLARY 2.2. If ξ ≥ 0 a.s. and f(t, 0, 0) ≥ 0 dP ⊗ dt a.s., then Y≥ 0 P a.s. In
addition, if Yt = 0 on a set A∈ Ft , then Ys = 0, f (s, 0, 0) = 0 on [t, T ] × A, dP ⊗ ds
a.s., andξ = 0 almost surely on A.

Proof of Theorem 2.5. We use the notation of Proposition 2.1. The pair(δY, δZ) is the
solution of the following LBSDE:

− dδYt = 1y f 1(t)δYt +1z f 1(t)∗δZt + δ2 ft dt − δZ∗t dWt ,(2.11)

δYT = ξ1− ξ2,

where1y f 1(t) = ( f 1(t,Y1
t , Z1

t )− f 1(t,Y2
t , Z1

t ))/(Y
1
t −Y2

t ) if Y1
t −Y2

t is not equal to 0,
whereas1y f 1(t) = 0, otherwise. Also,1z f 1,i (t) = ( f 1(t,Y2

t , Z̃i−1
t )− f 1(t,Y2

t , Z̃i ))/

(Z1,i
t − Z2,i

t ) if Z1,i
t − Z2,i

t is not equal to 0, whereas1z f 1,i (t) = 0, otherwise. HerẽZi

is the vector whose firsti components are equal to those ofZ2 and whosen− i others are
equal to those ofZ1; that is,Z̃i

t = (Z2,1
t , . . . , Z2,i

t , Z1,i+1
t , . . . , Z1,n

t ).

Now since by assumption the generatorf 1 is uniformly Lipschitz with respect to(y, z), it
follows that1y f 1 and1z f 1,i are bounded processes. Also,δ2 ft andδYT are nonnegative.
It follows from Proposition 2.2 that the unique square-integrable solution(δY, δZ) of the
LBSDE (2.11) is nonnegative and satisfies

0tδYt = E[(ξ1− ξ2)0T +
∫ T

t
0sδ2 fs ds|Ft ],(2.12)
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where0 is the adjoint (positive) process of the above LBSDE. Also, ifY1
t = Y2

t on a set
A ∈ Ft , thenξ1 = ξ2, δ2 fs = 0, dP⊗ ds on A× [t, T ], andY1

s = Y2
s a.s. onA× [t, T ].

Thus we obtain the last point of Theorem 2.2.

REMARK. Relax the assumptions of square integrability for the solutions of the BSDE
in the comparison theorem and suppose only that there exists a square-integrable variable
B ≥ 0 such thatY1

t −Y2
t ≥ −B, t ∈ [0, T ]. From the remark which follows Proposition 2.2,

it is easy to prove that the inequalityY1
. ≥ Y2

. still holds and that the other properties of the
comparison theorem hold, too.

2.3. Supersolution

Earlier (Definition 1.2) we introduced the notion of a superhedging strategy, which can
be considered as a supersolution of a one-dimensional LBSDE, defined as follows.

DEFINITION 2.1. Suppose thatd = 1. A supersolutionof a BSDE associated with
standard parameters( f, ξ) is a vector process(Y, Z,C) satisfying

− dYt = f (t,Yt , Zt ) dt − Z∗t dWt + dCt , YT = ξ,(2.13)

or, equivalently,

Yt = ξ +
∫ T

t
f (s,Ys, Zs) ds −

∫ T

t
Z∗s dWs +

∫ T

t
dCs ,(2.14)

where

• ξ is anR-valued,FT -measurable random variable.
• (Yt , t ∈ [0, T ]) is a right-continuous, left-limited adapted real process. WhenY is

continuous, the solution is said to be continuous.
• Z is a predictable process which takes values inRn with

∫ T
0 |Zs|2 ds< +∞P a.s.

• (Ct ; t ∈ [0, T ]) is an increasing, adapted, right-continuous process such thatC0 = 0.
• Y is bounded below; that is, there exists a square-integrableFT -measurable variable

B > 0 such thatYt ≥ −B , t ∈ [0, T ], P a.s.

REMARK a. Suppose thatf is a linear generator with bounded coefficientsβ, γ and
associated withϕ ∈ H2

T (R). The adjoint process is denoted by0. Let (Y, Z,C) be a
supersolution associated with( f, ξ). Then0tYt +

∫ t
0 0sϕs ds is a local supermartingale.

Notice that this property corresponds in finance to the fact that the discounted wealth
associated with a superhedging strategy is a risk-neutral supermartingale (in this caseϕ =
0).

REMARK b. By the extension of the comparison theorem (Theorem 2.2), it is clear that if
( f, ξ) are standard parameters the continuous supersolutions dominate the classical square-
integrable solution of the BSDE. This property applied to European option pricing in the
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constrained case (Sections 1.3 and 3.3) shows that the upper price corresponds to the square-
integrable strategy (that is, the first statement of Theorem 1.1 still holds).

REMARK c. Let(Y1, Z1) and(Y2, Z2) be two square-integrable solutions of BSDEs with
standard parameters satisfying the assumptions of the comparison theorem 2.2. Then there
exists an increasing processC2 such that(Y2, Z2,C2) is a supersolution for the BSDE with
parameters( f 1, ξ1).

An important property is that the infimum of two continuous supersolutions is still a
supersolution. More precisely,

PROPOSITION2.3. Let(Y1, Z1,C1) and(Y2, Z2,C2) be two continuous supersolutions
of the BSDEs with parameters( f 1, ξ1) and ( f 2, ξ2). Then there exists(Z∗,C∗) such
that (Y∗ = Y1 ∧ Y2, Z∗,C∗) is a supersolution of the backward equation with terminal
conditionξ ∗ = ξ1∧ ξ2 and generator f∗(t, y, z) = 1Y1

t ≤Y2
t

f 1(t, y, z)+ 1Y2
t <Y1

t
f 2(t, y, z).

In particular, if f 1 = f 2, then(Y∗ = Y1 ∧ Y2, Z∗,C∗) is a supersolution of the BSDE
with parameters( f ∗, ξ ∗).

Proof. Recall the Tanaka formula (Karatzas and Shreve 1987) for the minimum of two
continuous semimartingalesY1 andY2,

dY1
t ∧ Y2

t = 1Y1
t ≤Y2

t
dY1

t + 1Y2
t <Y1

t
dY2

t − dLt ,

whereL is a local time—that is, a continuous increasing process with support included in
{t ∈ [0, T ],Y1

t = Y2
t }. ThenY∗ = Y1 ∧ Y2 satisfies

−dY∗t = 1Y1
t ≤Y2

t
[ f 1(t,Y1

t , Z1
t ) dt − Z1

t dWt + dC1
t ]

+ 1Y2
t <Y1

t
[ f 2(t,Y2

t , Z2
t ) dt − Z2

t dWt + dC2
t ] + dLt .

Put Z∗t = 1Y1
t ≤Y2

t
Z1

t + 1Y2
t <Y1

t
Z2

t and dC∗t = 1Y1
t ≤Y2

t
dC1

t + 1Y2
t <Y1

t
dC2

t + dLt . Then
(Y∗ = Y1 ∧ Y2, Z∗,C∗) is a supersolution with parameters( f ∗, ξ ∗) sinceY1 ∧ Y2 is
bounded below.

COROLLARY 2.3. Let (Y1, Z1,C1) be a continuous positive supersolution of a BSDE
with parameters( f 1, ξ1). Then the increasing process1{Y1

t =0} dC1
t is absolutely continuous

with respect to the positive measure f1(t, 0, 0)− dt.

Proof. The above calculation applied withf 2 = 0, ξ2 = 0, C2 = 0, Y2 = 0, and
Z2 = 0 yields to

0= 1Y1
t =0[ f 1(t,Y1

t , Z1
t ) dt − Z1

t dWt + dC1
t ] + dLt .

Hence 1Y1
t =0Z1

t dWt = 0 and 1Y1
t =0[ f 1(t, 0, 0) dt + dC1

t ] + dLt = 0. It follows that on
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{Y1
t = 0}, f 1(t, 0, 0) is negative and

dLt + 1Y1
t =0dC1

t = 1Y1
t =0 f 1(t, 0, 0)− dt,

and so the result follows.

2.4. Flow and BSDE Dependence upon Parameters

In this section we study the properties of continuity and differentiability of the solutions
of BSDEs depending on parameters and the flow properties of a BSDE. These results follow
essentially from the a priori estimates.

Continuity and Differentiability. Let ( f (α, ·), ξ(α, ·), α ∈ R) be a family of standard
parameters of a BSDE whose solutions are denoted by(Yα, Zα). For notational conve-
nience, we often write(Y0, Z0) for (Yα0, Zα0). Let us make the following hypotheses:

1. The family f (α, ·), α ∈ R, is equi-Lipschitz; i.e., there existsC > 0 such that,
dP⊗ dt a.s.,

∀α ∈ R , | f (α, ω, t, y1, z1)− f (α, ω, t, y2, z2)| ≤ C(|y1− y2| + |z1− z2|).

2. The function α 7→ ( f (α, ·), ξ(α)) is “continuous”; i.e., for eachα0,
f (α, t,Y0

t , Z0
t ) − f (α0, t,Y0

t , Z0
t ) converges to 0 inH2

T,β(Rd) andξ(α) − ξ(α0)

converges to 0 inL2
T (Rd) asα→ α0.

3. f (·, ω, t, y, z) andξ(·, ω) are equi-Lipschitz with respect toα.
4. ∀α ∈ R , f (α, ·) is differentiable with respect to(y, z) with uniformly bounded

derivatives denoted by∂y f (α, y, z) and∂z f (α, y, z) which are uniformly contin-
uous; that is,∀ε > 0∃η such thatdP⊗ dt a.s.,

|h| < η ⇒ ∀(α, y, z), |∂y f (α, ω, t, y+ h, z)− ∂y f (α, ω, t, y, z)| < ε

(and the same holds for∂z f (α, y, z)). Such assumptions hold if, for example,f is
twice differentiable with bounded second derivatives .

5. The functionα 7→ ( f (α, ·), ξ(α, ·)) is differentiable; i.e., for eachα0 the func-
tionsα 7→ f (α, ·,Y0

. , Z0
. ),R → H2

T,β(Rd) andα 7→ ξ(α, ·),R → L2
T (Rd) are

differentiable atα0 with derivative∂α f (α0, ·,Y0
. , Z0

. ).

PROPOSITION2.4. Let ( f (α, ·), ξ(α, ·) , α ∈ R) be a family of standard parameters of
a BSDE with solutions denoted by(Yα, Zα).

1. Suppose these parameters satisfy hypotheses 1 and 2. Then the functionα 7→
(Yα, Zα),R→ H2

T,β(Rd)×H2
T,β(Rn×d), is continuous. Moreover if hypothesis 3

holds,6 there exists a bicontinuous version of(α, t) 7→ (Yα
t ).

6It is sufficient to suppose that for anyα, γ ∈ R the spread between the corresponding solutions(Yα), (Yγ )
satisfies the inequality

E[sup
t≤T
|Yαt − Yγt |2] ≤ M(1+ |α|2)|α − γ |2

for a constantM > 0.
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2. Suppose these parameters satisfy hypotheses 4 and 5. Then the functionα 7→
(Yα, Zα) ; R→ H2

T,β(Rd)×H2
T,β(Rn×d), is differentiable with derivatives given

by (∂αYα, ∂αZα), the solution of the following BSDE:

−d(∂αYα
t ) = [∂y f (α, t,Yα

t , Zαt )∂αYα
t + 〈∂z f (α, t,Yα

t , Zαt ), ∂αZαt 〉] dt(2.15)

+∂α f (α, t,Yα
t , Zαt ) dt − (

∂αZαt
)∗

dWt ,

∂αYα
T = ∂αξ

α ,

where7 〈∂z f, ∂αZα〉 = (〈∂z f i , ∂αZα〉)1≤i≤d.

Proof.8 Property 1 is an immediate consequence of the a priori estimates. Let us prove
the second one. By hypothesis 3 and the a priori estimates (Proposition 2.1), it follows that
for a constantM > 0

E[sup
t≤T
|Yα

t − Yγ
t |2] ≤ M |α − γ |2 .

The existence of a bicontinuous version follows from Kolmogorov’s criteria (Karatzas and
Shreve 1987, p. 53; Revuz and Yor 1991, Chapter VI, Proposition 1.3).

Let us show that if hypotheses 4 and 5 hold, then for eachα0 ∈ R the functionα 7→
(Yα, Zα), R 7→ H2,d

T,β × H2,n×d
T,β is differentiable atα0. For notational convenience, we

can assume thatα0 = 0 and that the dimensionsn andd are equal to one. Put1αYt =
α−1(Yα

t − Y0
t ) and1αZt = α−1(Zαt − Z0

t ). Then

−d1αYt = α−1[ f (α, t,Yα
t , Zαt )− f (0, t,Y0

t , Z0
t )] dt −1αZ∗t dWt ,

1αYT = α−1[ξ(α)− ξ(0)] .

Hence, as in the proof of Theorem 2.5, we treat this equation as a linear one:

−d1αYt = ψ(α, t,1αYα
t , 1αZαt ) dt − (1αZα)∗t dWt ,

whereψ is defined byψ(α, t, y, z) = Aα(t) y + Bα(t) z + ϕα(t) and where, forα 6= 0,

Aα(t) =


f (α, t,Yα
t , Zαt )− f (α, t,Y0

t , Zαt )

Yα
t − Y0

t
if Yα

t 6= Y0
t ,

∂y f (α, t,Y0
t , Zαt ) otherwise,

(2.16)

Bα(t) =


f (α, t,Y0
t , Zαt )− f (α, t,Y0

t , Z0
t )

Zαt − Z0
t

if Zαt 6= Z0
t ,

∂z f (α, t,Y0
t , Z0

t ) otherwise,
(2.17)

7We use the notation〈∂z f i , ∂αZα〉 =
∑

1≤k≤n,1≤l≤d
∂zk,l f i ∂αZαk,l .

8We thank Martin Schweizer for his remark concerning this proof.
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and

ϕα(t) = 1

α

(
f (α, t,Y0

t , Z0
t )− f (0, t,Y0

t , Z0
t )
)
.

Putψ(0, t, y, z) = ∂y f (0, t,Y0
t , Z0

t ) y + ∂z f (0, t,Y0
t , Z0

t ) z + ∂α f (0, t,Y0
t , Z0

t ).
By property 1 of this proposition,(Yα, Zα) converges to(Y0, Z0) in H2,1

T,β ⊗ H2,1
T,β .

We now have to prove that(1αY,1αZ) converges to(∂αY0, ∂αZ0), the solution of the
above BSDE, asα goes to 0. To use the same convergence argument, we must show that
ψ(α, ·, ∂αY0, ∂αZ0) converges toψ(0, ·, ∂αY0, ∂αZ0) inH2,1

T,β⊗H2,1
T,β asα goes to 0. Notice

that Aα(t) = ∫ 1
0 ∂y f (α, t,Y0

t + λ(Yα
t − Y0

t ), Zαt ) dλ. Consequently,

E
∫ T

0
(Aα(t)− ∂y f (α, t,Y0

t , Zαt ))
2(∂αY0

t )
2 dt

≤ E
∫ T

0

∫ 1

0
(∂y f (α, t,Y0

t + λ(Yα
t − Y0

t ), Zαt )

− ∂y f (α, t,Y0
t , Zαt ))

2(∂αY0
t )

2 dλ dt.

Splitting this integral into two terms on the sets{|Yα
t − Y0

t | ≤ η} and{|Yα
t − Y0

t | > η}
and using that, by hypothesis 4,∂y f (α, t, y, z) is uniformly continuous and bounded (by a
constantK ), it follows that for eachε > 0 there existsη > 0 such that

||(Aα(t)− ∂y f (α, ·,Y0, Zα))∂αY0||22 ≤ ε2||∂αY0||22+ K 2E
∫ T

0
1{|Yαt −Y0

t |>η}|∂αY0
t |2 dt.

Now split the last term into two parts corresponding to the set{|∂αY0
t | ≤ M} and its

complement. Then by applying the Markov inequality toYα
t − Y0

t , we have

E
∫ T

0
1{|Yαt −Y0

t |>η}|∂αY0
t |2 dt ≤ M2

η2
||Yα − Y0||22+ E

∫ T

0
1{|∂αY0|>M}|∂αY0

t |2 dt.

By the Lebesgue theorem, since∂αY0 is square integrable,E
∫ T

0 1{|∂αY0|>M}|∂αY0
t |2 dt con-

verges to 0 asM →∞. ChoosingM sufficiently large and using the convergence ofYα to
Y0 in H2,1

T , it follows easily that

lim
α→0
||(Aα(t)− ∂y f (α, ·,Y0, Zα))∂αY0||2 = 0.

By the same method we easily see that limα→0 ||(∂y f (α, ·,Y0, Zα) − ∂y f (0, ·,Y0, Z0))

∂αY0||2 = 0. Hence, it follows that limα→0 ||(Aα(t)−∂y f (0, ·,Y0, Z0))∂αY0||2 = 0. Sim-
ilar arguments give that limα→0 ||(Bα(t)− ∂z f (0, t,Y0, Z0))∂αZ0||2 = 0. Consequently,
using hypothesis 5, asα goes to 0,ψ(α, t, ∂αY0, ∂αZ0) converges toψ(0, ·, ∂αY0, ∂αZ0)

in H2,1
T,β ×H2,1

T,β . By the first part of the proposition, the solution(1αY,1αZ) converges to(
∂αY0, ∂αZ0

)
in H2,1

T,β ×H2,1
T,β .
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REMARK. Notice that, as for the a priori estimates, one can take the normE[supt≤T |Yt |2]
instead of||Y||β for Y. Consequently, if the parameters are differentiable, then the function
α 7→ Yα is differentiable for this norm.

Flow of a BSDE. Recall the dependence of the solutions of BSDE with respect to
terminal condition by the notation(Y(T, ξ), Z(T, ξ)). We provide a flow property and
some regularity results similar to the case of forward SDEs.

PROPOSITION2.5. Let (Y, Z) be the solution of a BSDE with standard parameters
(T, f, ξ).

• For any stopping time S≤ T ,

Yt (T, ξ) = Yt (S,YS(T, ξ)), Zt (T, ξ) = Zt (S,YS(T, ξ)), t ∈ [0, S] dP⊗dt a.s.

• Suppose that the sequence of stopping times Sn converges a.s. to S and that the
sequence of the terminal variablesξn ∈ FSn converges inL2

T (Rd) to ξ ∈ FS. Then
the pair of processes(Y(Sn, ξn), Z(Sn, ξn)) converges inH2

T,β(Rd)×H2
T,β(Rn×d) to

(Y(S, ξ), Z(S, ξ)).

Proof. By conventional notation we define the solution of the BSDE with terminal
condition(T, ξ) for t ≥ T by (Yt = ξ, Zt = 0). So if T ′ ≥ T , then(Yt , Zt ; t ≤ T ′) is the
unique solution of the BSDE with standard parameters(T ′, f (t, y, z)1{t≤T}, ξ).

Now let S ≤ T be a stopping time, and denote byYt (S, ξS) the solution of the BSDE
with standard parameters(T, f (t, y, z)1{t≤S}, ξS). The processes(Yt (S,YS), Zt (S,YS); t ∈
[0, T ]) and(Yt∧S(T, ξ), Zt (T, ξ)1{t≤S}; t ∈ [0, T ]) are solutions of the BSDE with param-
eters(T, f (t, y, z)1{t≤S},YS). By uniqueness these processes are the samedP ⊗ dt a.s.
The convergence property results immediately from Proposition 2.4, since the parameters
(T, f (t, y, z)1{t≤Sn}, ξn) satisfy hypotheses 1 and 2 of that proposition.

3. CONCAVE BSDES AND CONTROL PROBLEMS

In this section we are concerned with the solution of a BSDE with respect to standard
parameters that are infima of standard parameters. This property can be translated to the
solutions under some mild conditions. In other words,

Yt (inf f α, inf ξα) = ess infYt ( f α, ξα).

This property can be applied to some classical control problems. Under some mild condi-
tions, the value function can be characterized as the solution of a (concave) BSDE. From
this point of view, classical properties of the value function can be derived. Then we show
that, conversely, the solution(Y, Z) of a BSDE (withd = 1) with concave generator can
be considered as the value function of a control problem.

3.1. BSDE and Optimization

Solution of BSDE as Minimum or Minimax.In this section we are concerned with
standard generatorsf (respectively terminal conditionsξ ) which can be obtained as infima
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of standard generatorsf α (respectively of terminal conditionsξα). From the comparison
theorem the solution of the BSDE associated with( f, ξ) is less than the infimum of the
solutions associated with( f α, ξα). The problem is to know when the equality holds.

PROPOSITION3.1. Let ( f, ξ) and( f α, ξα) be a family of standard parameters, and let
(Y, Z) and (Yα, Zα) be the solution of associated BSDEs. Suppose that there exists a
parameterα such that

f (t,Yt , Zt ) = ess inf
α

f α(t,Yt , Zt ) = f α(t,Yt , Zt ) dP⊗ dt a.s.,(3.1)

ξ = ess inf
α
ξα = ξα Pa.s.

Then the9 processes Y and Yα satisfy

Yt = ess inf
α

Yα
t = Yα

t , ∀t ∈ [0, T ], Pa.s.(3.2)

Proof. (Y, Z) and(Yα, Zα) are solutions of two BDSEs whose generators and terminal
conditions satisfy the assumptions of the comparison theorem (2.5). Hence, for anyα,
Yt ≤ Yα

t and, consequently,Yt ≤ ess infYα
t for any timet P a.s.

We now prove the equality using the uniqueness theorem for BSDEs and the existence
of a parameterα such thatf (t,Yt , Zt ) = f α(t,Yt , Zt ) andξ = ξα a.s. Hence,(Y, Z) and
(Yα, Zα) are both solutions of the same BSDE with parameters( f α, ξα); therefore, they
are the same. So,

ess infYα
t ≥ Yt = Yα

t ≥ ess infYα
t ∀t ∈ [0, T ], P a.s.

COROLLARY 3.1. The same result holds if the generators only satisfy the following:

• The generators fα are equi-Lipschitz with the same constant C.
• For eachε > 0, there exists a controlαε such that

f (t,Yt , Zt ) = ess inf f α(t,Yt , Zt ) ≥ f α
ε

(t,Yt , Zt )− ε, dP⊗ dt a.s.,(3.3)

ξ = ess inf
α
ξα ≥ ξαε − ε,Pa.s.

Proof. We suppose that the generators satisfy (3.3). PutδYt = Yt − Yαε

t andδZt =
Zt − Zα

ε

t . Using the same arguments as in the proof of the comparison theorem, we derive

9Dellacherie (1977) introduced the notion of ess inf of processes in the following manner:

• a processU is said to minorize the processUα if {ω; ∃t ∈ [0, T ]Ut (ω) > Uα
t (ω)} is aP-null set.

• a processU is said to be ess infUα if, for anyα, U minorizesUα , and if a processV which minorizesUα

for eachα minorizesU . Moreover, for right-continuous left-limited processesUα , ess infUα exists and
there exists a denumberable family(αn) such thatU = inf Uαn .
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that(δY, δZ) is the solution of the following LBSDE :

−dδYt = 1y f (t)δYt + 〈1z f (t), δZt 〉 + δ f εt dt − δZ∗t dWt ,(3.4)

δYT = ξ − ξαε ,

where1y f (t) and1z f (t) are predictable processes bounded by the Lipschitz constantC
of f and

δ f εt = f (t,Yt , Zt )− f α
ε

(t,Yt , Zt ).

It follows that

δYt = E
[∫ T

t
0t,sδ f εs ds+ 0t,TδYT |Ft

]
,(3.5)

where0t,. is the adjoint process (positive) of the above LBSDE; that is,

d0s = 0s[1y f (s) ds+1z f (s)∗ dWs], 0t = 1 .(3.6)

By (3.3) we have

δYt ≥ −εE
[∫ T

t
0t,s ds+ 0t,T |Ft

]
≥ −ε(T + 1)eCT,

whereC is the Lipschitz constant for thef α ’s and the result follows.

Similar results were extended to minimax problems in Hamadene and Lepeltier (1994) in
connection with stochastic differential games. These techniques are also useful for solving
optimization problems associated with recursive utilities (Quenez 1993; El Karoui, Peng,
and Quenez 1994).

COROLLARY 3.2. Let ( f, ξ) and ( f α,β, ξα,β) be a family of standard parameters, and
let (Y, Z) and(Yα,β, Zα,β) be the associated solutions. Suppose that f and fα,β (resp.ξ
andξα,β) are linked by a minimax relation and that there exists a pair of parameters(α, β)

such that the following formulation of the Isaac condition holds:

f (t,Yt , Zt ) = ess inf
α

sup
β

f α,β(t,Yt , Zt ) = f α,β(t,Yt , Zt ), dP⊗ dt a.s.,(3.7)

ξ = ess inf
α

sup
β

ξα,β = ξα,β,Pa.s.

Then the solutions Yt and Yα,βt are also linked by a minimax relation with saddle point
(α, β); that is, the Isaac condition is satisfied:

Yt = ess inf
α

sup
β

Yα,β
t = Yα,β

t = ess sup
β

inf
α

Yα,β
t ∀t ∈ [0, T ], Pa.s.(3.8)
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Proof. Use the fact that(α, β) is a saddle point; i.e.,

ess sup
β

f α,β(Yt , Zt ) ≥ f (t,Yt , Zt ) = f α,β(t,Yt , Zt ) ≥ ess inf
α

f α,β(t,Yt , Zt ) .

The same inequalities hold for the terminal conditions. As a consequence of the previous
proposition, the same inequalities hold for the solutions:

ess sup
β

Yα,β
t ≥ Yt = Yα,β

t ≥ ess inf
α

Yα,β
t ∀t ∈ [0, T ], P a.s.

These inequalities imply that the Isaac condition is satisfied for these processes.

Stochastic Control Problems.A number of stochastic control problems (Krylov 1980;
El Karoui 1981; Elliott 1982; Davis 1973; El Karoui and Jeanblanc-Picqu´e 1988) are
specified in the following manner: the laws of the controlled process belong to a family of
equivalent measures whose densities are

d Hu
t = Hu

t [d(t, ut ) dt + n(t, ut )
∗ dWt ], Hu

0 = 1 ,(3.9)

whered(t, u) andn(t, u) are predictable processes uniformly bounded byδt andνt re-
spectively. A feasible control(ut , t ∈ [0, T ]) is a predictable process valued in a (Polish)
spaceU . The set of feasible controls is denoted byU . The problem is to minimize over all
feasible control processesu the objective function

J(u) = E
[∫ T

0
Hu

t k(t, ut ) dt + Hu
T K (uT )

]
,(3.10)

whereK (·, uT ) is the terminal condition andk(·, t, ut ) is the running cost associated with
the control processu. The processes(k(ω, t, u), t ∈ [0, T ])) (respectively the terminal
conditionsK (ω, u)) are assumed to be measurable with respect toP ⊗B(U ) (respectively
FT ⊗ B(U )), whereB(U ) is the Borelianσ -algebra onU ; furthermore, they are assumed
to be uniformly bounded by a square-integrable process(kt ; t ∈ [0, T ]) (respectively by a
square-integrable variableχ ). We also suppose thatδ, ν, k, andχ are bounded.

The controller acts on the law of processes by change of equivalent probability measures
with Radon-Nikodym derivatives given by

dLu
s = Lu

s n(s, us)
∗ dWs

and by a controlled discount factor with bounded rated(s, us); that is,

d Du
s = Du

s d(s, us) ds, with Hu
t = Du

t Lu
t .
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Let us denote byQu the probability measure with densityLu
T onFT . Then the objective

function can be written

J(u) = EQu

[∫ T

0
Du

t k(t, ut ) dt + Du
T K (uT )

]
.(3.11)

Notice that, by Proposition 2.2,J(u) = Yu
0 , where(Yu, Zu) is the solution of the linear

BSDE associated with standard parameters( f u, ξu), where

f u(t, y, z) = k(t, ut )+ d(t, ut ) · y+ n(t, ut )
∗z, ξu = K (uT ).

The processHu corresponds to the adjoint process associated with(Yu, Zu) and

Yu
t = E

[∫ T

t
Hu

t,s k(s, us) dt + Hu
t,Tξ

u | Ft

]
.

The previous results yield the verification theorem that is a sufficient condition for a
process to be the value function.

PROPOSITION3.2 (Verification Theorem). The parameters( f, ξ) defined by

f (t, y, z) = ess inf{ f u(t, y, z) | u ∈ U}, ξ = ess inf{ξu | u ∈ U} ,

are standard parameters. Let(Y, Z) be the solution of the BSDE associated with terminal
condition ξ . Then Y is the value function Y∗ of the control problem; that is, for each
t ∈ [0, T ],

Yt = Y∗t = ess inf{Yu
t | u ∈ U} .

Proof. To show thatf is a standard generator, we have to overcome measurability ques-
tions: for given(ω, t), f (ω, t, y, z) = inf{k(ω, t, u)+d(ω, t, u)y+n(ω, t, u)∗z | u ∈ U}
is a concave function with respect to(y, z), with bounded derivatives. By taking the mini-
mum only over a denumerable dense family{(yn, zn)}, we define, for eachn, a measurable
processf (t, yn, zn) and adP⊗ dt-null setN such that, for(ω, t) ∈ Nc, f (ω, t, yn, zn) =
inf{k(ω, t, u) + d(ω, t, u)yn + n(ω, t, u)∗zn, | u ∈ U}. For (ω, t) ∈ Nc, f (ω, t, y, z) is
defined as the limit of the Cauchy sequencef (ω, t, yn, zn) as(yn, zn) goes to(y, z). So,
the infimum of the linear generators defines a standard generatorf .

To apply the previous results on the infimum of standard generators, we will use the
following lemma.

LEMMA 3.1. For eachε > 0 there exists a feasible control uε such that

f (t,Yt , Zt ) = ess inf f u(t,Yt , Zt ) ≥ f uε (t,Yt , Zt )− ε, dP⊗ dt a.s.,(3.12)

ξ = ess infξu ≥ ξuε − ε,a.s.
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Proof. For each(ω, t) ∈ Ä× [0, T [, the sets given by

{u ∈ U | f (t,Yt (ω), Zt (ω)) ≥ k(t, ω,u)+ d(t, ω,u) · Yt (ω)+ n(t, ω,u)∗Zt (ω)− ε}

and {u ∈ U | ξ(ω) ≥ K (ω, u) − ε} are nonempty. Hence, by a measurable selection
theorem (see, for example, Dellacherie 1972 or Benes 1970, 1971) and sinceY andZ are
predictable processes andk, d, n, andK are measurable, there exists aU -valued predictable
processesuε such that

f (t,Yt , Zt ) = ess inf f u(t,Yt , Zt ) ≥ f uε (t,Yt , Zt )− ε, dP⊗ dt a.s.,(3.13)

ξ = ess infξu ≥ ξuε − ε,P a.s.

Proof of the Verification Theorem. Corollary 3.1 and Lemma 3.1 give the desired result
directly.

Recall that the main tool in stochastic control is theprinciple of dynamic progamming
(see Fleming and Rishel 1975 or El Karoui 1981). However, in the context of BSDEs it
is nothing else than the flow property (2.11). Using the same notation as in (2.11), for
a stopping timeS ≤ T and anFS-measurable variableξS, we denote byYu

t (S, ξS) the
solution of the BSDE with standard parameters(T, f u(t, y, z)1{t≤S}, ξS).

PROPOSITION3.3. The value function(Yt ) satisfies the dynamic programming principle:
for any time t and any stopping time S with t≤ S≤ T ,

Yt (T, ξ) = ess inf
u∈U

Yu
t (S,YS(T, ξ))Pa.s.,

which can also be written

Yt (T, ξ) = ess inf
u∈U

E
[∫ S

t
Hu

t,s k(s, us) dt + Hu
t,SYS(T, ξ) | Ft

]
Pa.s.

Actually, the optimization problem is to find a 0-optimal controlu0 which achieves the
minimum for the problem inf{Yu

0 | u ∈ U}; that is,Y∗0 = Yu0

0 . The comparison theorem
gives acriterion for finding 0-optimal controls.

COROLLARY 3.3 (Optimality Criterion). A control (u0
s, 0 ≤ s ≤ T) is 0-optimal if and

only if

f (s,Ys, Zs) = f u0
(s,Ys, Zs) dP⊗ ds a.s.,(3.14)

ξ = ξu0 Pa.s.

In this case, u0 is also optimal for the problem starting at time t; that is, Y∗t = Yu0

t .
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Proof. It is an easy consequence of the second part of the comparison theorem 2.2.

From the verification theorem and Remark b, Section 2.3,(Y, Z) is a subsolution of the
BSDEs with parameters( f u, ξu). For each feasible controlu, Hu

t Yt +
∫ t

0 Hu
s k(s, us) ds is

a uniformly integrable submartingale with increasing process given by
∫ t

0 Hu
s K u

s ds, where

K u
t = − f (t,Yt , Zt )+ f u(t,Yt , Zt ).

Furthermore, the optimality criterion yields thatu0 is 0-optimal if and only ifξ = ξu0
and

K u0

t = 0—in other words, if and only ifYT = K (u0
T ) andHu0

t Yt +
∫ t

0 Hu0

s k(s, u0
s) ds is a

martingale. Consequently, the previous results correspond to the classical properties of the
value function (El Karoui 1981, Theorem 3.2).

In control theory the processesδ andν are not necessarily bounded but are integrable
enough to guarantee that the family(Hu

T ) is uniformly bounded inL2,1
T (El Karoui 1981,

p. 297). If f is not a standard generator, it is not possible to use the BSDE equations. The
direct study of the value functionY∗ gives thatY∗ is the greatest process equal toξ at timeT
such thatHu

t Y∗t +
∫ t

0 Hu
s k(s, us) ds is a uniformly integrable submartingale for any feasible

controlu. Using arguments of weak convergence about a minimizing control sequence, it
is proved in El Karoui (1981) thatY∗t is a solution (not necessarily square integrable) of the
BSDE associated with terminal conditionξ and with generatorf and that it is the maximal
solution.

Notice that in this example the generatorf is concave. We will see in the next section
that, conversely, a concave BSDE is always associated with a control problem.

Concave BSDE as Infimum.Here we fix some notation and recall a few properties of
convex analysis (whose proofs are, for example, in Ekeland and Teman 1976 and Ekeland
and Turnbull 1979) in order to show that a concave generator is an infimum of linear
generators. Letf (t, y, z) be a standard generator of a BSDE, concave with respect toy, z,
and letF(t, β, γ ) be the polar process associated withf :

F(ω, t, β, γ ) = sup
(y,z)∈R×Rn

[ f (ω, t, y, z)− β y− γ ∗z] .(3.15)

Theeffective domain of Fis, by definition,

DF = {(ω, t, β, γ ) ∈ Ä× [0, T ] × R× Rn| F(ω, t, β, γ ) < +∞}.

Notice10 that, since by assumptionf is uniformly Lipschitz with Lipschitz constantC, the
(ω, t)-section ofDF , denoted byD(ω,t)F , is included in the bounded domainK = [−C,C]n+1

10Indeed, if, for example,β satisfies|β| > C, then

f (ω, t, y, z)− β y− γ ∗z≥ −C|y| + f (ω, t, 0, z)− βy− γ ∗z .
Now, supy∈R[−C|y| − βy] = +∞. Hence,(β, γ ) /∈ D(ω,t)F .



36 N. EL KAROUI, S. PENG, AND M. C. QUENEZ

of R× Rn. Since f is concave,f is continuous with respect to(y, z), and( f, F) satisfies
the conjugacy relation

f (ω, t, y, z) = inf{F(ω, t, β, γ ) + βy + γ ∗z | (β, γ ) ∈ D(ω,t)F } .

For every(ω, t, y, z) the infimum is achieved in this relation by a pair(β, γ )which depends
on (ω, t).11

We want to associate with the polar processF a wide enough family of linearstandard
generatorsf β,γ such that the assumptions of Proposition 3.1 hold. Let

f β,γ (t, y, z) = F(t, βt , γt ) + βt y+ γ ∗t z ,

where (β, γ ) are predictable processes, calledcontrol parameters. Recall that by the
conjugacy relationf is also the infimum off β,γ . To ensure thatf β,γ is a standard generator,
it is sufficient to suppose that(β, γ ) belongs toA, defined by

A =
{
(β, γ ) ∈ P,K-valued | E

∫ T

0
F(t, βt , γt )

2 dt < +∞
}
.

A is said to be the set ofadmissible control parameters. Let (Y, Z) be the unique solution
of the BSDE with concave standard generatorf and terminal valueξ. To apply Proposition
3.1, we must show the following lemma (which is similar to Lemma 3.1).

LEMMA. There exists an optimal control(β, γ ) ∈ A such that

f (t,Yt , Zt ) = f β,γ (t,Yt , Zt ) dP⊗ dt a.s.

Proof. Recall that for each(t, ω, y, z) the infimum in the conjugacy relation is achieved,
since f is concave uniformly Lipschitz. Also, by a measurable selection theorem and since
f (·,Y, Z),Y, andZ are predictable processes, there exists a pair of predictable (bounded)
processes(β, γ ) such that

f (t,Yt , Zt ) = f β,γ (t,Yt , Zt ), dP⊗ dt a.s.

11Indeed, for fixed(ω, t) there exists a sequence(βk, γ k)k∈N ∈ D(ω,t)F such that

f (ω, t, y, z) = lim
k→+∞

{F(ω, t, βk, γ k) + βk y + (γ k)∗z} .

Now since the sequence(βk, γ k) is bounded, there exists a subsequence still denoted by(βk, γ k)which converges
in K to (β, γ ). Also, (β, γ ) achieves the infimum sinceF is continuous and

F(ω, t, β, γ ) + βy + γ ∗z= lim
k→+∞

[F(ω, t, βk, γ k) + βk y + (γ k)∗z] = f (ω, t, y, z).



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 37

Since by assumptionf (·,Y, Z), Z, andY are square integrable andβ, γ are bounded,
F(·, β, γ ) belongs also toH2,1

T . Hence, the pair(β, γ ), which achieves the infimum in the
conjugacy relation, belongs toA.

For each control process(β, γ ) ∈ A, introduce the dual “controlled objective” processes
(Yβ,γ , Zβ,γ ) as the unique solution of the LBSDE with data( f β,γ , ξ). Thus Proposition 3.1
gives directly the following result.

PROPOSITION3.4. Let f be a concave standard generator and fβ,γ the associated
linear standard generators satisfying

f = ess inf{ f β,γ | (β, γ ) ∈ A} dP⊗ dt a.s.

ThenP a.s. for any time t,

Yt = ess inf{Yβ,γ
t | (β, γ ) ∈ A} .

Let us interpret the above result as associated with a control problem, with control setA.
From Proposition 2.2, the LBSDEs solutionYβ,γ

t can be written using the adjoint process
(0β,γt,s , t ≤ s ≤ T), which is the unique solution of the forward linear SDE

d0s = 0s[βs ds+ γs dWs] 0t = 1 ,(3.16)

in the following manner:

Yβ,γ
t = E

[∫ T

t
0
β,γ
t,s F(s, βs, γs) ds+ 0

β,γ

t,T ξ |Ft

]
.

HereYβ,γ is called thecontrolled objective functionof a control problem, where the running
cost function is the functionF(t, β, γ ) and the terminal cost is the random variableξ .

3.2. Application to Recursive Utility

We come back to the example of recursive utility presented in Section 1. In an economic
or financial context the generatorf (t, ct , Yt , Zt ) represents the instantaneous utility (at
time t) of consumption rate(ct ≥ 0). In general, we suppose that the consumption process
c belongs toH2

T (R+) and is such that( f (·, c, ·, ·), ξ) are standard parameters of BSDE (in
particular,12 f (·, c, 0, 0) ∈ H2

T (R)).

Classical Properties. In this section we show that under natural conditions the classical
properties of utilities (Section 1.4) are satisfied by recursive ones; actually, it is a direct
consequence of the comparison theorem.

12For example, it suffices that| f (t, c, 0, 0)| ≤ k1 + k2|c|P a.s.
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PROPOSITION3.5. Let ξ1 andξ2 be two terminal rewards which belong toL2
T (R). Let

c1 and c2 be two consumption processes which belong toH2
T (R+). Let Yc1,ξ1

and Yc2,ξ2

be the recursive utilities associated with( f (t, c1, ·), ξ1) and ( f (t, c2, ·), ξ2). Then the
following are true:

• (Time consistency) Supposeξ1 = ξ2 = ξ . If Yc1,ξ
t ≥ Yc2,ξ

t and c1s = c2
s, 0 ≤ s ≤ t ,

dP⊗ ds a.s., then Yc1,ξ
s ≥ Yc2,ξ

s , 0≤ s ≤ t , P a.s.
• (Monotonicity with respect to the terminal value) Suppose c1 = c2 = c. If ξ1 ≥

ξ2 Pa.s., then Yc,ξ1 ≥ Yc,ξ2 P a.s.
• (Monotonicity with respect to the consumption) Supposeξ1 = ξ2 = ξ . If the gen-

erator f is nondecreasing with respect to c, and if c1
t ≥ c2

t , dP ⊗ dt a.s., then
Yc1,ξ ≥ Yc2,ξ , P a.s.

• (Concavity) If the generator f is concave with respect to c, y, and z, then for each
λ ∈ [0, 1], λYc1,ξ1 + (1− λ)Yc2,ξ2 ≤ Yc,ξ , P a.s., where c= λc1 + (1− λ)c2 and
ξ = λξ1+ (1− λ)ξ2.

Proof. We show how to prove the first point. SinceYc1,ξ
t ≥ Yc2,ξ

t P a.s. and sinceYc1,ξ

andYc2,ξ have the same generator on [0, t ], the result follows from the comparison theorem
applied between time 0 and timet . The other properties are also direct consequences of the
comparison theorem.

Variational Formulation of the Recursive Utility.A natural assumption for a recursive
utility is the concavity of the generatorf with respect to(c, y, z). Consequently, by the
results on concave BSDEs, the recursive utility can be written as the value function of a
control problem.

Fix ξ , a terminal reward which belongs toL2
T (R), andc, a consumption process in

H2
T (R+). Let Yc,ξ be the associated recursive utility—that is, the solution of the BSDE

associated with generatorf (t, ct (·), ·, ·) and terminal valueξ . For a consumption ratect ,
let F(t, ct , ·, ·) be the polar function off (t, ct , ·, ·); i.e.,

F(t, ct , β, γ ) = sup
(y,z)∈R×Rn

[ f (t, ct , y, z)− β · y− γ · z] .

LetA(c)be the set of admissible processes(β, γ ) such thatE
∫ T

0 F(t, ct , βt , γt )
2 dt < +∞.

Then by Section 3.1 the recursive utility can be written as

Yc,ξ
t = ess inf

(β,γ )∈A
E
[∫ T

t
0
β,γ
t,s F(s, cs, βs, γs) ds+ 0

β,γ

t,T ξ |Ft

]
.

Hence the recursive utilityYc,ξ can be defined through a felicity functionF first introduced
by Geoffard (1995) in the deterministic case. The felicity functionF(t, c, β, γ ) at some
current timet , expressed in terms of current time, is a function of current consumptionc,
current rate−β, and risk premium−γ . This function can be thought as an ex post felicity
when the agent knows the current rate and the risk premium.

Notice that the adjoint processes0β,γ can be interpreted as a deflator (Duffie 1992 or
Duffie, Geoffard, and Skiadias 1992). Also, the processYβ,γ

t can be interpreted as an ex
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post utility, when the deflator is given by0β,γt . Hence, the utility is equal to the minimum
of ex post utilities over all price deflators. Ex ante the optimal deflator is the one that
minimizes the agent’s ex post utility.

Concerning the wealth process associated with some portfolio consumption strategy, we
have the same kind of interpretation, as we shall to see in the next section.

3.3. Application to European Option Pricing in the Constrained Case

A general setting of the wealth equation (which extends the examples of Section 1.3) is

− d Xt = b(t, Xt , σ
∗
t πt ) dt − π∗t σt dWt .(3.17)

Hereb is a real process defined onÄ× [0, T ]×R×Rn satisfying the standard hypotheses
of a generator. The classical case (Section 1.2) corresponds to a linear functional

b(t, x, z) = −rt x − z∗θt ,

whereθ is the bounded risk premium vector andr is the bounded spot-rate process. Notice
that, sinceb is Lipschitz, given an initial investmentx and a risky portfolioπ , there exists
a unique wealth process solution of the forward equation (3.17) with initial valuex.

A price system is a mapping9 which maps a contingent claimξ ≥ 0 onto its (predictable)
price process(9t (ξ), 0≤ t ≤ T) such that

• At any timet , the price9t (ξ) for a positive contingent claimξ is positive.
• At any timet , the price9t (ξ) is an increasing function with respect toξ .
• No-arbitrage holds for these nonlinear strategies; i.e., ifξ1 ≥ ξ2, and if the pricesX1

t
andX2

t coincide on an eventA ∈ Ft , then onA, ξ1 = ξ2, a.s.

Furthermore, a price system9 is admissible for the sellers if at any timet the price9t (ξ)

is a convex function with respect toξ .
Let ξ ≥ 0 be a square-integrable contingent claim. As in the classical case the price for

the contingent claimξ is the wealth processX associated with an admissible strategy which
financesξ ; i.e., (X.σ ∗.π.) is the square-integrable solution of BSDE (3.17) with standard
parameters(b, ξ).

Let us show that, under some conditions, this price rule9.(ξ) = X. defines a price system
admissible for the sellers. Actually, the comparison theorem gives sufficient conditions so
that these different properties hold:

• The price is increasing with respect to the contingent claim, and the property of
no-arbitrage corresponds exactly to the strict comparison theorem.

• Supposeb(t, 0, 0) ≥ 0, dP⊗ dt a.s. Then the price is positive and it is smaller than
any supersolution of BSDE (3.17).

• Supposeb is convex with respect to(x, z). Then the price system is convex with
respect to the terminal value.

This convexity property holds in all examples of Section 1.3, where the prices are viewed
as superprices. In the next section we give a variational formulation of this price system
whenb is assumed to be convex.
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Variational Formulation of the Price System.Suppose that the generatorb is convex
with respect to(x, z). Let B(t, β, γ ) be the polar process associated withb:

B(t, β, γ ) = inf
(x,z)∈R×Rn

[b(t, x, z)+ β.x + γ ∗z] .(3.18)

Theeffective domain of Bis, by definition,Dt
B = {(β, γ )| B(t, β, γ ) > −∞}. Sinceb is

convex,(b, B) satisfies the conjugacy relation

b(t, x, z) = sup{B(t, β, γ ) − βx − γ.z | (β, γ ) ∈ Dt
B} .

The results on concave BSDEs give

PROPOSITION3.6. Let (X, π) be the hedging strategy forξ such that(X, σ ∗π) is the
unique solution of BSDE (3.17), with convex standard parameters(b, ξ). Then Xt can be
written as the maximum of ex post prices over all feasible deflators; that is,

Xt = ess sup{Xβ,γ
t | (β, γ ) ∈ A} ,

whereA is the set of(β, γ ) feasible control parameters, defined by

A =
{
(β, γ ) ∈ P | E

∫ T

0
B(t, βt , γt )

2 dt < +∞
}

and where, for each pair of control parameters(β, γ ) ∈ A, the ex post strategy(Xβ,γ , πβ,γ )

corresponds to the unique solution of the LBSDE

− d Xβ,γt = (B(t, βt , γt ) − βt X
β,γ
t − (γt )

∗σ ∗t π
β,γ
t ) dt − (πβ,γ )∗t σt dWt ,(3.19)

Xβ,γ

T = ξ .

The ex post strategy(Xβ,γ , πβ,γ ) is a classical hedging strategy against the claimξ in a
fictitious market, with bounded interest rate processβ, bounded risk premium processγ ,
and cost function B. Furthermore, the price of the contingent claimξ is the standard price
in an optimal fictitious market associated with(β, γ ) which achieves the supremum in the
conjugacy relation

b(t, Xt , σ
∗
t πt ) = B(t, β t , γ t ) − β t Xt − (γ )∗t σ

∗
t πt dP⊗ dt a.s.(3.20)

We remark that the only difference in the nonconstrained case is the fact that the optimal
fictitious market depends on the claim to be priced (and also the introduction of a cost
function).

EXAMPLE. We come back to Example 1.1 (Section 1.3, hedging claims with higher
interest rate for borrowing) and solved by Cvitanic and Karatzas (1993) under slightly
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different assumptions. Here we suppose the matrix(σ ∗)−1 to be a bounded process. The
hedging strategy (wealth, portfolio)(X, π) satisfies

d Xt = rt Xt dt + π∗t σtθt dt + π∗t σt dWt − (Rt − rt )

(
Xt −

n∑
i=1

π i
t

)−
dt,(3.21)

XT = ξ .

Like the other coefficients, the processR (Rt ≥ rt ) is supposed to be bounded. The
generatorb of this LBSDE is given by the convex process

b(t, x, σ ∗t π) = −rt x − π∗σtθt + (Rt − rt )(x − π∗t 1)− .

The polar processB(t, β, γ ) associated withb is given by

B(t, β, γ ) =
{

0 if γ = θt + σ−1
t (rt − β)1 andrt ≤ β ≤ Rt ,

−∞ otherwise.
(3.22)

By Proposition 3.6, it follows that the unique solution(X, σ ∗π) of the BSDE (5.14) satisfies

Xt = ess sup{Xβ
t | rt ≤ βt ≤ Rt },

where

−d Xβt = −βt X
β
t − [σtθt + (rt − βt )1]∗πβt dt − (πβt )∗σt dWt , XT = ξ.

REMARK. The problems with constraints on the wealth (El Karoui et al. 1995) or on
the portfolio (El Karoui and Quenez 1995; Cvitanic and Karatzas 1992, 1993) can be
formulated formally in the same way but with a generator which can be infinite, with
nonbounded effective domain. For example, the case of an incomplete market (Section 1.3)
and, more generally, the case of the portfolio processπt being constrained to take values
in a convex setK (Cvitanic and Karatzas 1992) corresponds formally to an upper price
(Xt , 0≤ t ≤ T) solution of BSDE (3.17) with generator

b(t, x, σ ∗t π) = −rt x − π∗σtθt + 1K (π) ,

where1K (π) is the indicator function ofK in the sense of convex analysis, namely equal
to 0 if π ∈ K and equal to∞ otherwise. Notice that the example of an incomplete market
corresponds toK = {π ∈ Rn | πk = 0, j ≤ k ≤ n.}

The variational formulation of the price remains almost the same as the one described
in Section 3.3. However, as in the example of an incomplete market, the effective domain
is not bounded; moreover, the supremum is not attained and(X, π) is not the solution of a
classical BSDE.
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4. MARKOVIAN CASE

4.1. Forward-Backward Stochastic Differential Equations

In this section we consider the solution of certain BSDEs associated with some forward
classical stochastic differential equations. For example, the forward equation can be the
dynamics of some basic securities as in Section 1.1. Now suppose that the randomness of
the parameters( f, ξ) of the BSDE comes from the state of the forward equation. When
the initial conditions(t, x) for the forward equation are taken into account, the backward
solution(Y, Z) can be viewed as a parametrized BSDE where the parameters are the data
(t, x); consequently, some regularity properties of the solutions follow from regularity
properties of the coefficients of the forward and backward equations.

However, the main property of forward-backward SDEs (FBSDEs) is that the solution
(Y, Z) of the BSDE can be written as functions of time and the state process. The solution
is said to be Markovian. When the generatorf depends not ony andz but only on time
and the state process, the Markov property of the forward diffusion allows one to express
the BSDEs solution by means of the diffusion semigroup or as a viscosity solution of the
second-order associated PDE. For Markovian standard parameters the same property holds
and gives a generalization of the Feynman-Kac formula for nonlinear PDEs as stated by
Peng (1991), Peng (1992b), and Pardoux and Peng (1992).

The Model. For any given(t, x) ∈ [0, T ] × Rp, consider the following classical Itˆo
stochastic differential equation defined on [0, T ]:

d Ps = b(s, Ps) ds+ σ(s, Ps) dWs, t ≤ s ≤ T,(4.1)

Ps = x, 0≤ s ≤ t .

The solution of (4.1) will be denoted(Pt,x
s , 0 ≤ s ≤ T). We then consider the associated

BSDE

− dYs = f (s, Pt,x
s ,Ys, Zs) ds− Z∗s dWs,(4.2)

YT = 9(Pt,x
T ) .

The solution of (4.2) will be denoted{(Yt,x
s , Zt,x

s ), 0 ≤ s ≤ T}. The coupled system (4.1)
and (4.2) is said to be an FBSDE and the solution is denoted by{(Pt,x

s ,Yt,x
s , Zt,x

s ), 0 ≤
s ≤ T}.

Here f (resp.9) is anRd-valued Borel function defined on [0, T ] × Rp × Rd × Rn×d

(resp. onRp), andb (resp.σ ) is anRp-valued (resp.Rp×n-valued) function defined on
[0, T ] ×Rp. Standard Lipschitz assumptions are required on the coefficients; that is, there
exists a Lipschitz constantC > 0 such that

|σ(t, x)− σ(t, y)| + |b(t, x)− b(t, y)| ≤ C(1+ |x − y|),
| f (t, x, y1, z1)− f (t, x, y2, z2) | ≤ C[| y1− y2 | + | z1− z2 |].
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Finally, we will suppose that there exists a constantC such that, for each(s, x, , y, z),

|σ(t, x)| + |b(t, x)| ≤ C(1+ |x|),
| f (t, x, y, z)| + |9(x)| ≤ C(1+ |x|p)

for real p ≥ 1/2.

Properties of Solutions of BSDEs Associated with Some FSDEs.These equations are
in a quite complex way examples of BSDEs parametrized by the initial conditions(t, x) of
the FSDE. The parametrized generator is given here byf (s, Pt,x

s (ω), y, z) and the terminal
condition byξ(ω) = 9(Pt,x

T (ω)). As in Proposition 2.4, regularity properties of the
solutions follow from regularity properties of the parameters of the BSDE.

PROPOSITION4.1. 1. For each t∈ [0, T ] and x∈ Rp there exists C≥ 0 such that

E

(
sup

0≤s≤T
|Yt,x

s |2
)
+ E

(∫ T

0
|Zt,x

s |2 ds

)
≤ C(1+ |x|2) .(4.3)

2. Suppose that f and9 are globally Lipschitz with respect to x, uniformly in t concerning
f . Then for each t, t ′ ∈ [0, T ], t ≤ t ′, and x, x′ ∈ Rp, there exists C≥ 0 such that

E[ sup
0≤s≤T

|Yt,x
s − Yt ′,x′

s |2] + E

[∫ T

0
|Zt,x

s − Zt ′,x′
s |2 ds

]
(4.4)

≤ C(1+ |x|2)(|x − x′|2+ |t − t ′|) .

3. If b, σ , f , and9 are twice continuously differentiable with respect to x with uniformly
bounded derivatives, then for each t the function x7→ (Yt,x

. , Zt,x
. ),R 7→ H2

T,β(Rd) ×
H2

T,β(Rn×d), is differentiable. Let the matrices of first-order partial derivatives of Pt,x,
Yt,x, and Zi,t,x with respect to x be denoted by the p× p matrix ∂x Pt,x, by the d× p
matrix ∂xYt,x, and by the d× p matrix∂x Zi,t,x respectively (where Zi,t,x is the ith line of
the matrix Zt,x). Then, for t≤ s ≤ T,

−d∂xYt,x
s = [∂y f (s, Pt,x

s ,Yt,x
s , Zt,x

s )∂xYt,x
s(4.5)

+∂z f (s, Pt,x
s ,Yt,x

s , Zt,x
s )∂x Zs] ds

+∂x f (s, Ps,Ys, Zs)∂x Ps ds −
∑

1≤i≤n

∂x Zi,t,x
s dWi

s ,

∂xYt,x
T = ∂x9(P

t,x
T )∂x Pt,x

T .

Proof. As in Proposition 2.4, the results follow from regularity properties of the standard
parameters given by( f (s, Pt,x

s , y, z),9(Pt,x
T )), so for this proof regularity properties with

respect to(t, x) are required onPt,x
. .

Using the classical martingale inequalities (Karatzas and Shreve 1987, Theorems 3.28 and
2.9), we derive by classical techniques that, for eacht, t ′ ∈ [0, T ], t ≤ t ′, andx, x′ ∈ Rp,
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there existsC ≥ 0 such that

E

(
sup

0≤s≤T
|Pt,x

s |2
)
≤ C(1+ |x|2),(4.6)

E

(
sup

0≤s≤T
|Pt,x

s − Pt ′,x′
s |2

)
≤ C(1+ |x|2) (|x − x′|2+ |t − t ′|) .

Using the first inequality and the a priori estimates, we easily obtain inequality (4.3).
Suppose now thatf, 9 are globally Lipschitz with respect to(x, y, z). Then, from the
above inequalities, the a priori estimates, and the fact thatf is Lipschitz with respect tox,
we obtain inequality (4.4).

It remains to show the third statement. Suppose thatb, σ , f , and9 are continuously
differentiable with respect tox, y, andzwith uniformly bounded derivatives. Recall (Krylov
1980) that the processPt,x

. is differentiable with respect tox and that the matrix of the first-
order derivatives∂x Pt,x

s is a solution of the FSDE

d∂x Pt,x
s = ∂xb(s, Pt,x

s ) ∂x Pt,x
s ds + ∂xσi (s, Pt,x

s ) ∂x Pt,x
s dWi

s , ∂x P0 = I ,

where we use the convention of summation over the repeated indexi , from i = 1 to i = p,
andσi denotes thei th column of the matrixσ . Then, using exactly the same arguments as
in the proof of Proposition 2.4, the result easily follows.

REMARK. If b, σ, f , and9 are continuously differentiable with respect tox, y, and
z with uniformly bounded derivatives, then the solution{(Yt,x

s , Zt,x
s ); s ∈ [t, T ]} is also

differentiable in Malliavin’s sense (see Section 5.2) and there exists a version of the Malliavin
derivative denoted by(DθYt,x

s , Dθ Zt,x
s , 0 ≤ θ , t ≤ s ≤ T) which satisfiesDsYt,x

s = Zt,x
s

dP⊗ ds-almost surely. This property is very useful for computing or estimatingZ (which
corresponds to the hedging portfolio in the pricing theory of contingent claims).

An important property is thatYt,x
t is deterministic. More precisely, the measurability

properties of{Pt,x
s ; s ∈ [t, T ]} still hold for the solution{(Yt,x

s , Zt,x
s ); s ∈ [t, T ]}.

PROPOSITION4.2. The solution{(Yt,x
s , Zt,x

s ); s ∈ [t, T ]} of (4.2) is adapted to the future
σ -algebra of W after t; that is, it isF t

s-adapted where for each s∈ [t, T ], F t
s = σ(Wu −

Wt , t ≤ u ≤ s). In particular, Yt,x
t is deterministic. Consequently, Yt,x

s = Yt,x
t and

Zt,x
s = 0 for 0≤ s ≤ t .

Proof. Recall first that pathwise (and strong) uniqueness holds for (4.1) (Karatzas and
Shreve 1987, pp. 285, 287, 301). Consider now the translated Brownian motionW′ and its
associated filtration defined byW′s = Wt+s−Wt , 0≤ s ≤ T−t ;F ′s = F t

t+s , 0≤ s ≤ T−t .
Let (P′(0,x)s , 0≤ s ≤ T − t) be the(F ′s)-adapted solution of the SDE

d P′s = b(s, P′s) ds+ σ(s, P′s) dW′s, P′0 = x .(4.7)
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By uniqueness for the FSDE,Pt,x
s = P′(0,x)s−t , 0 ≤ s ≤ T − t , a.s. (consequentlyPt,x

s is
F t

s-adapted). We then consider the associatedF ′-adapted solution(Y′s, Z′s , 0≤ s ≤ T− t)
of the BSDE

− dY′s = f (s+ t, P′s,Y
′
s, Z′s) ds− (Z′s)∗ dW′s, Y′T−t = 9(P′T−t ) .(4.8)

Hence,{(Y′s−t , Z′s−t ) , t ≤ s ≤ T)} is a solution of (4.2) on [t, T ]. By uniqueness,
(Y′s−t , Z′s−t ) = (Yt,x

s , Zt,x
s ) , t ≤ s ≤ T . Consequently,{(Y′s−t , Z′s−t ) , t ≤ s ≤ T)} is

F t
s-adapted.

Markov Properties of Solutions of BSDEs Associated with Some FSDEs.Another way
to prove thatYt,x

t is deterministic, and more generally thatYt,x
s is a deterministic function

of Pt,x
s , is to use the iterative construction of the solution of the standard BSDE by noticing

that if f does not depend ony, z then the property follows from the Markov property of
the forward diffusionPt,x:

Yt,x
s = E

[
9(Pt,x

T )+
∫ T

s
f (r, Pt,x

r ) dr |Fs

]
= 8(s, Pt,x

s ) ,

where

8(s, y) = E
[
9(Ps,y

T )+
∫ T

s
f (u, Ps,y

u ) du

]
.

The solution of the BSDE is said to beMarkovian. Furthermore, the processZt,x associated
with Yt,x by the martingale representation theorem is also a deterministic function ofPt,x.
This result can be deduced from Cinlar et al.’s (1980) study on the functional additive
martingale of a diffusion process (see also Dellacherie and Meyer 1980, pp. 241–244). In
our notation, Theorem 6.27 in Cinlar et al. (1980) can be written as follows.

LEMMA 4.1. LetBe be the filtration onRd generated by the functions

E
∫ T

t
φ(s, Pt,x

s ) ds,

whereφ is a continuous boundedRd-valued function. Then for anyBe-measurable f and
9 such that

E
∫ T

0
| f (s, Pt,x

s )|2 ds< +∞, E[|9(Pt,x
T )|2] < +∞ ,

the process Yt,xs = E[9(Pt,x
T ) + ∫ T

s f (r, Pt,x
r ) dr |Fs] admits a continuous version given

by Yt,x
s = u(s, Pt,x

s ), where u(t, x) = E[9(Pt,x
T ) + ∫ T

t f (r, Pt,x
r ) dr ] is Be-measurable.

Moreover,
∫ s

t f (r, Pt,x
r ) dr+Yt,x

s is an additive square-integrable martingale which admits
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the representation

∫ s

t
f (r, Pt,x

r ) dr + Yt,x
s =

∫ s

t
d(r, Pt,x

r )∗σ(r, Pt,x
r ) dWr , t ≤ s ≤ T, Pa.s.,

where d(t, x) isB([0, T ])⊗ Be(Rp×d)-measurable.

We now consider a BSDE associated with an FSDE whose data satisfy the general
assumption at the beginning of the section and prove that the solution at times, (Yt,x

s , Zt,x
s ),

is Markovian in the sense that both of these processes only depend ons andPt,x
s .

THEOREM4.1. There exist twoB([0, T ])⊗Be(Rd)- andB([0, T ])⊗Be(Rp×d)-measurable
deterministic functions u(t, x) and d(t, x), respectively, such that the solution(Yt,x, Zt,x)

of BSDE (4.2) is

Yt,x
s = u(s, Pt,x

s ), Zt,x
s = σ ∗(s, Pt,x

s )d(s, Pt,x
s ) , t ≤ s ≤ T , dP⊗ ds a.s.

Furthermore, for anyFt -measurable random variableχ ∈ L2(Rp), the solution(Yt,χ
s , Zt,χ

s )

is given by(u(s, Pt,χ
s ), σ ∗(s, Pt,χ

s )d(s, Pt,χ
s )), for s≥ t, dP⊗ ds a.s.

Proof. This result can be established by the iterative procedure used in the proof of
the existence of the solution of a backward equation (Theorem 2.1 and Corollary 2.1).
This procedure gives a recursive construction of the solution(Yt,x, Zt,x) from the sequence
(Y(t,x),k, Z(t,x),k) defined byY(t,x),0 = 0, Z(t,x),0 = 0, and

−dYk+1
s = f (s, Pt,x

s ,Yk
s , Zk

s) ds− (Zk+1
s )∗ dWs, Yk+1

T = 9(Pt,x
T ) .

We know from Corollary 2.1 that the sequence(Y(t,x),k, Z(t,x),k) convergesdP ⊗ ds a.s.
to (Yt,x, Zt,x) the unique square-integrable solution of the BSDE; forYt,x we also have
that sups∈[t,T ] |Y(t,x),k

s −Y(t,x)
s | convergesP a.s. to 0. By Lemma 4.1, the theorem holds for

parameters( f, ξ) depending only on(s, Pt,x
s ). By applying Lemma 4.1, we conclude by

recursion that there exists someBe-measurable functionsuk, dk such that

Y(t,x),k
s = uk(s, Pt,x

s ), Z(t,x),ks = σ(s, Pt,x
s )∗dk(s, Pt,x

s ).

Put

ui (s, x) = lim sup
k→+∞

ui
k(s, x), di, j (s, x) = lim sup

k→+∞
di, j

k (s, x),

whereu = (ui )1≤i≤d andd = (di, j )1≤i≤p,1≤ j≤d. Notice that from the a.s. convergence of
the sequence(Y(t,x),k, Z(t,x),k) to (Yt,x, Zt,x), it follows thatP a.s.,∀s ∈ [t, T ],

ui (s, Pt,x
s ) = (lim sup

k→∞
ui

k)(s, Pt,x
s ) = lim sup

k→∞
(ui

k(s, Pt,x
s )) = lim

k→∞
Yi,(t,x),k

s = Yi,(t,x)
s .
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The same properties hold ford, and we derive thatd(s, Pt,x
s ) = Z(t,x)s , dP⊗ ds a.s.

By Proposition 4.1, it follows that if the coefficients are supposed to be regular, then the
functionu satisfies some additional regularity properties. In particular, if the coefficients are
differentiable, recall that the solution is differentiable in the usual sense and in Malliavin’s
sense and thatZs is given (almost surely) by the Malliavin derivativeDsYs (see Section 5.1
for a precise definition ofDsYs). In this case the functiond can be written as a function of
∂xu andσ .

COROLLARY 4.1. We suppose that b, σ, f , and9 are globally Lipschitz with respect
to (x, y, z), uniformly in t concerning f . Then u is locally Lipschitz in x and1/2-Hölder
continuous in t. Furthermore, if b, σ, f , and9 are continuously differentiable with respect
to (x, y, z) with uniformly bounded derivatives, then for0≤ t ≤ s ≤ T, x ∈ Rp,

Zt,x
s = σ(s, Pt,x

s )∗∂xu(s, Pt,x
s ) dP⊗ ds a.s.

Proof. The first statement is a direct consequence of (4.3) and (4.4). Let us show the
second one. Recall thatYt,x is differentiable with respect tox in H2,d

T,β and inS2; hence,
u is differentiable with respect tox. SinceYt,x

s = u(s, Pt,x
s ), it follows by the chain rule

(see Nualart 1986, p. 90; 1995, Proposition 1.2.2) thatDsYt,x
s = DsPt,x

s ∂xu(s, Pt,x
s ) .

Then, using the fact thatZt,x
s = DsYt,x

s andDsPt,x
s = σ(s, Pt,x

s )∗ almost surely, the result
follows.

BSDE and Partial Differential Equations.In this section we study the relation between
these forward-backward equations and partial differential equations (PDE). We first give
a generalization of the Feynman-Kac formula stated by Pardoux and Peng (1992). Then
we show that, conversely, under smoothness conditions the functionu(t, x) = Yt,x

t is a
solution in some sense of a PDE.

PROPOSITION4.3 (Generalization of the Feynman-Kac Formula).Letv be a function of
classC1,2 (or smooth enough to be able to apply Itô’s formula tov(s, Pt,x

s )) and suppose
that there exists a constant C such that, for each(s, x),

|v(s, x)| + |σ(s, x)∗∂xv(s, x)| ≤ C(1+ |x|).

Also,v is supposed to be the solution of the following quasilinear parabolic partial differ-
ential equation:

∂tv(t, x)+ Lv(t, x)+ f (t, x, v(t, x), σ (t, x)∗∂xv(t, x)) = 0,
v(T, x) = 9(x) ,(4.9)

where∂xv is the gradiant ofv andL(t,x) denotes the second-order differential operator

L(t,x) =
∑
i, j

ai j (t, x)∂2
xi xj
+
∑

i

bi (t, x)∂xi , ai j = 1
2[σσ ∗] i j .
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Thenv(t, x) = Y(t,x)
t , where{(Yt,x

s , Zt,x
s ), t ≤ s ≤ T)} is the unique solution of BSDE

(4.2). Also,(Yt,x
s , Zt,x

s ) = (
v(s, Pt,x

s ), σ (t, Pt,x
s )∗∂xv(t, Pt,x

s )
)
, t ≤ s ≤ T .

Proof. By applying Itô’s formula tov(s, Pt,x
s ) we have

d v(s, Pt,x
s ) = (∂tv(s, Pt,x

s )+ Lv(s, Pt,x
s )

)
ds + ∂xv(s, Pt,x

s )∗σ(s, Pt,x
s ) dWs.

Sincev solves (4.9), it follows that

−d v(s, Pt,x
s ) = f (s, Pt,x

s , v(s, Pt,x
s ), σ (s, Pt,x

s )∗∂xv(s, Pt,x
s )) ds

− ∂xv(s, Pt,x
s )∗σ(s, Pt,x

s ) dWs

with v(T, Pt,x
T ) = 9(Pt,x

T ). Thus, {v(s, Pt,x
s ), σ (s, Pt,x

s )∗∂xv(s, Pt,x
s ), s ∈ [0, T ]} is

equal to the unique solution of BSDE (4.2), and the result is obtained.

REMARK. Ma, Protter, and Yong (1994) use this point of view to study some more general
FBSDEs of the type

d Pt,x
s = b(s, Pt,x

s ,Yt,x
s , Zt,x

s ) ds+ σ(s, Pt,x
s ,Yt,x

s ) dWs, t ≤ s ≤ T,
Pt,x

s = x, 0≤ s ≤ t,
(4.10)

−dYt,x
s = f (s, Pt,x

s ,Yt,x
s , Zt,x

s ) ds− (Zt,x
s )∗ dWs

Yt,x
T = 9(Pt,x

T ).
(4.11)

Their motivation is to prove the existence and the uniqueness of an adapted solution
(X,Y, Z) of this system. Antonelli (1993) had already proved the existence of such a
solution, using a fixed-point theorem in the case whereb does not depend onZ and only
under the assumptionCT < 1, whereC is the Lipschitz constant off (it means that there
exists a solution on a small interval only). He also gave some examples for which this
condition is not satisfied and there is no solution of the FBEs. Thus, Ma et al. (1994) are
concerned with showing the existence of an adapted solution(X,Y, Z) of (4.10), (4.11)
without the assumptionCT < 1. Their method is the following: they know by analysis
results that, under some strong assumptions on the coefficients, there exists a classical so-
lution of the associated PDE. Using this solution, they state, by a verification method, the
existence and uniqueness of the system of forward-backward equations.

Their method was used in the mathematical finance setting in a recent preprint, “Hedging
options for a large investor and forward-backward SDE’s,” by Cvitanic and Ma (1994) and
in “Black’s consol rate conjecture,” by Duffie, Ma, and Yong (1994).

We now show that, conversely, in certain cases the solution of the BSDE (4.2) corresponds
to the solution of the PDE (4.3). Ifd = 1, we can use the comparison theorem to show that
if b, σ, f , and9 satisfy the assumptions at the beginning of the section and iff and9 are
supposed to be uniformly continuous with respect tox, thenu(t, x) is a viscosity solution
of (4.9) (Peng 1992b; Pardoux and Peng 1992).
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THEOREM4.2. We suppose that d= 1 and that f and9 are uniformly continuous with
respect to x. Then the function u defined by u(t, x) = Yt,x

t is a viscosity solution of PDE
(4.9).

Furthermore, if we suppose that for each R> 0 there exists a continuous function
mR: R+ → R+ such that mR(0) = 0 and

| f (t, x, y, z)− f (t, x′, y, z)| ≤ mR(|x − x′|(1+ |z|)),(4.12)

for all t ∈ [0, T ], |x|, |x′| ≤ R, and|z| ≤ R for z ∈ Rn, then u is the unique viscosity
solution of PDE (4.9).

Before giving the proof, recall the definition of a viscosity solution (Fleming and Soner
1993).

DEFINITION 4.1. Supposeu ∈ C ([0, T ] × Rp) satisfiesu(T, x) = 9(x), x ∈ Rp.
Then u is called aviscosity subsolution(resp.supersolution) of PDE (4.9) if, for each
(t, x) ∈ [0, T ] × Rp andφ ∈ C1,2([0, T ] × Rp) such thatφ(t, x) = u(t, x) and(t, x) is a
minimum (resp. maximum) ofφ − u,

∂tφ(t, x)+ Lφ(t, x)+ f (t, x, φ(t, x), σ (t, x)∗∂xφ(t, x)) ≥ 0

(resp.

∂tφ(t, x)+ Lφ(t, x)+ f (t, x, φ(t, x), σ (t, x)∗∂xφ(t, x)) ≤ 0).

Moreover,u is called aviscosity solutionof PDE (4.9) if it is both a viscosity subsolution
and a viscosity supersolution of PDE (4.9).

Proof of Theorem 4.2. The continuity of the functionu with respect to(t, x) follows
from Corollary 4.1. Now we show thatu is a viscosity subsolution of (4.9) (the proof is
the same ifu is a supersolution). Let(t, x) ∈ [0, T ] × Rp andφ ∈ C1,2 ([0, T ] × Rp) be
such thatφ(t, x) = u(t, x) andφ ≥ u on [0, T ] × Rp. We can suppose without loss of
generality thatφ is C∞ and has bounded derivatives.13

Forh ≥ 0 we haveφ(t+h, Pt,x
t+h) ≥ u(t+h, Pt,x

t+h) = Yt,x
t+h, so one could think of letting

h tend to 0 in the inequality

φ(t + h, Pt,x
t+h)− φ(t, x)−

∫ t+h

t
f (s, Pt,x

s ,Yt,x
s , Zt,x

s ) ds +
∫ t+h

t
Zt,x

s dWs ≥ 0.

But we do not know if the processZt,x
s converges toσ(t, x)∗∂xφ(t, x).

13Indeed, ifφ ∈ C1,2([0, T ] ×Rp) such thatφ(t, x) = u(t, x) and(t, x) is a minimum ofφ − u, then it is
possible to construct a sequence of functionsφn ∈ C∞ with bounded derivatives such thatφn (respectively its
first and second derivatives) converges toφ (respectively its first and second derivatives) asn tends to infinity,
uniformly on compacts.



50 N. EL KAROUI, S. PENG, AND M. C. QUENEZ

Now let {(Ys, Zs), t ≤ s ≤ t + h} be the solution of the BSDE

Ys = φ(t + h, Pt,x
t+h)+

∫ t+h

s
f (r, Pt,x

r ,Yr , Zr ) dr −
∫ t+h

s
Zr dWr .

Note that(Y, Z) has the same generator as(Y, Z), but the terminal condition is given by
φ(t + h, Pt,x

t+h) (which is greater thanYt+h = u(t + h, Pt,x
t+h)). By the comparison theorem

and continuity of the processes, it follows thatYt ≥ Yt,x
t = u(t, x) = φ(t, x). Then we have

to show that, by lettingh tend to 0,Ys tends toφ(t, x) andZs tends to∂xφ(t, x)∗σ(t, x).
Actually, a development ofY until the first order suffices to obtain the result.

First, putG(s, x) = ∂sφ(s, x) + Lφ(s, x) + f (s, x, φ(s, x), ∂xφ(s, x)σ (s, x)) for t ≤
s ≤ t + h. Notice that we want to show thatG(t, x) ≥ 0. Now putỸs = Ys−φ(s, Pt,x

s )−∫ t+h
s G(r, x) dr , Z̃s = Zs − ∂xφσ(s, Pt,x

s ). We show thatỸt = hε(h), whereε(h) → 0
ash→ 0. By Itô’s formula,(Ỹs, Z̃s), t ≤ s ≤ t + h, is the unique solution of the BSDE

Ỹs =
∫ t+h

s
f (r, Pt,x

r , φ(r, Pt,x
r )+Ỹr+

∫ t+h
r G(v, x) dv, ∂xφσ(r, Pt,x

r )+ Z̃r ) dr(4.13)

+
∫ t+h

s
[(∂rφ + Lφ)(r, Pt,x

r ) − G(r, x)] dr −
∫ t+h

s
Z̃r dWr .

We first show that(Ỹ, Z̃) tends to(0, 0) ash goes to 0. By the a priori estimates applied to
(Y1, Z1) = (Ỹ, Z̃) and(Y2, Z2) = (0, 0), it follows that

E
[

sup
t≤s≤t+h

|Ỹs|2
]
+ E

[∫ t+h

t
|Z̃s|2 ds

]
≤ KE

[∫ t+h

t
|δ(r, h)|2 dr

]
,

where

δ(r, h) = −G(r, x)+ (∂rφ + Lφ)(r, Pt,x
r )

+ f

(
r, Pt,x

r , φ(r, Pt,x
r )+

∫ t+h

r
G(v, x) dv , σ (r, Pt,x

r )∗∂xφ(r, Pt,x
r )

)
.

Now since supt≤s≤t+h E(|Pt,x
s − x|2)→ 0 ash→ 0, and since all the coefficients as well

asφ and its derivatives are uniformly continuous with respect tox, it follows that

lim
h→0

sup
t≤r≤t+h

E[|δ(r, h)|2] = 0 .

Hence we obtain

E
[

sup
t≤s≤t+h

|Ỹs|2
]
+ E

[∫ t+h

t
|Z̃s|2 ds

]
≤ KE

[∫ t+h

t
|δ(r, h)|2 dr

]
≤ hε(h) ,(4.14)



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 51

whereε(h)→ 0 ash→ 0. Consequently, we only haveE[
∫ t+h

t (|Ỹs|+|Z̃s|) ds] = h
√
ε(h)

(by the Cauchy-Schwartz inequality), and this estimate is not sufficient forỸ; we need to
haveỸt = hε(h).

Note that by taking the expectation in (4.13),Ỹt = E(Ỹt ) = E[
∫ t+h

t δ′(r, h) dr ], where

δ′(r, h) = −G(r, x)+ (∂rφ + Lφ)(r, Pt,x
r )

+ f (r, Pt,x
r , φ(r, Pt,x

r )+ Ỹr +
∫ t+h

r
G(v, x) dv , σ ∗(r, Pt,x

r )∂xφ(r, Pt,x
r )+ Z̃r ).

Since f is Lipschitz,|δ′(r, h)−δ(r, h)| ≤ K (|Ỹr |+|Z̃r |), and by (4.14),̃Yt = hε(h), where
ε(h)→ 0 ash→ 0. Hence, sinceYt ≥ φ(t, x), we have

∫ t+h
t G(r, x) dr ≥ −hε(h), so

1

h

∫ t+h

t
G(r, x) dr ≥ −ε(h) .

Then by lettingh tend to 0 we obtain

G(t, x) = ∂tφ(t, x)+ Lφ(t, x)+ f (t, x, φ(t, x), ∂xφ(t, x)σ (t, x)) ≥ 0 .

Hence,u is a viscosity solution of (4.9).
It remains to show the second statement of Theorem 4.2. Suppose that (4.12) is satisfied.

Then, by the uniqueness result of Ishii and Lions (1990), (4.9) has at most one viscosity
solution. The result follows.

Whend ≥ 1, Pardoux and Peng (1992) gave the following result.

PROPOSITION4.4. All the functions b, σ, f , and g are assumed to beC3 with bounded
derivatives. Then u(t, x) = Yt,x

t belongs toC1,2
(
[0, T ] × Rp,Rd

)
and it solves PDE (4.9).

Sketch of the proof. Refer to Pardoux and Peng (1992). By Proposition 4.1,u belongs
to C0,1([0, T ] × Rp,Rd). The proof thatu is C2 with respect tox needs some estimates of
sups |Zs|2 which can be given by the properties of the Malliavin derivative (Pardoux and
Peng 1992). Furthermore,

u(t + h, x)− u(t, x) = [u(t + h, x)− u(t + h, Pt,x
t+h)] + [u(t + h, Pt,x

t+h)− u(t, x)].

The second term on the right side,u(t + h, Pt,x
t+h)− u(t, x), is equal toYt,x

t+h − Yt,x
t , since,

by Theorem 4.1,Yt,x
t+h = u(t + h, Pt,x

t+h). Then, by applying Itˆo’s formula betweens = t
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ands= t + h to u(t + h, Pt,x
s ), it follows that

u(t + h, x)− u(t, x) = −
∫ t+h

t
Lu(t + h, Ps,x

s ) ds −
∫ t+h

t
(∂xu)∗σ(s, Pt,x

s ) dWs

−
∫ t+h

t
f (s, Pt,x

s ,Yt,x
s , Zt,x

s ) ds +
∫ t+h

t
(Zt,x

s )∗dWs .

By Corollary 4.1 we have(Zt,x
s )∗ = (∂xu)∗σ(s, Pt,x

s ). Then by dividing byh and lettingh
tend to 0, it follows thatu is differentiable with respect tot and thatu is a regular solution
of (4.9).

4.2. Application to European Option Pricing in the Constrained and Markovian Cases

In this section we give a simple application to finance which shows that Markovian
BSDEs are a useful tool in pricing theory since they give a generalization of the Black-
Sholes formula, in the sense where the price of a contingent claim which only depends on
the prices of the basic securities has the same property. Also the hedging portfolio depends
only on these prices.

Consider a financial market model with coefficients which only depend on times and on
the vector of stock price processPs. Fix (t, x) ∈ [0, T ] × Rn+1. Here, the prices of the
basic securities satisfy the following equations on [t, T ]:

d P0
s = r (s, Ps) P0

s ds,(4.15)

d Pi
s = Pi

s

[
µi (s, Ps) dt +

n∑
j=1

σ i
j (s, Ps) dWj

s

]
.(4.16)

Let (Pt,x
s , t ≤ s ≤ T) be the vector of stock price processes:Pt,x

s = (P0
s , P1

s , . . . , Pn
s )

with initial condition given byPt,x
t = x.

In this context a general setting of the wealth equation is

− d Xs = b(s, Ps, Xs, σ (s, Ps)
∗πs) ds− π∗s σ(s, Ps) dWs.(4.17)

Hereb is anR-valued continuous function defined on [0, T ]×Rn+1×R×Rn that is Lipschitz
with respect to(x, π) uniformly in t . The classical case (Section 1.1) corresponds to

b(t, x, y, z) = −r (t, x)y− θ∗(t, x)z ,

whereθ(t, x) is the risk premium vector:θ(t, x) = σ−1(t, x)(µ(t, x)−r (t, x)1). Consider
a contingent claimξ =φ(Pt,x

T ). Here,φ: Rn+1
+ → R+ is Lipschitz. There exists a unique

square-integrable hedging strategy(Xt,x, π t,x) ∈ H2,d
T ×H2,n×d

T againstξ such that

−d Xt,x
s = b(s, Pt,x

s , Xt,x
s , σ (s, Pt,x

s )∗π t,x
s ) ds− (π t,x

s )∗σ(s, Pt,x
s ) dWs,(4.18)

Xt,x
T = φ(Pt,x

T )
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andXt,x
s is the price of the contingent claimφ(Pt,x

T ) at times. Then from the results of this
section, the value at times of the contingent claimξ is

Xt,x
s = u(s, Pt,x

s ) ,

whereu(t, x) = Xt,x
t is the unique viscosity solution of the nonlinear parabolic PDE

∂u

∂t
+

n∑
i, j=1

ai j (t, x)xi xj
∂2u

∂xi ∂xj
(t, x)

+
n∑

i=1

µi (t, x)xi
∂u

∂xi
(t, x)+ r (t, x)x0

∂u

∂x0
(t, x)

= −b
(
t, x, u(t, x), σ ∗(t, x)

[
x ∂u
∂x

])
,

u(T, x) = φ(x) ,

(4.19)

whereai j (t,x) = 1
2[σσ ∗] i j (t, x) and [x ∂u

∂x ] = (xi
∂u
∂xi
(t, x)). Also if the functionb is C3 with

bounded derivatives, thenu belongs toC1,2([0, T ] × Rn+1,R) and it is a regular solution
of the PDE. Notice that the portfolio process of the hedging strategy is then

π i
s = Pi

s

∂u

∂xi
(s, Ps), t ≤ s ≤ T, 1≤ i ≤ n.

5. ADDITIONAL RESULTS: GENERALIZED BSDES AND MALLIAVIN
DERIVATIVES

5.1. Lp Solutions of BSDE and Extension of the Filtration

In this section we give some generalizations for the solutions of BSDEs. We relax the
assumption that the underlying filtration is a Brownian filtration, and only suppose that
(Ft ) is a right-continuous complete filtration. Furthermore, we are interested in solving the
BSDE under ap-integrability assumption of the parameters. The definition of a solution
of BSDE must be extended in the following way. Consider the generalized stochastic
backward differential equation (GBSDE)

− dYt = f (t,Yt , Zt ) dt − Z∗t dWt − d Mt , YT = ξ,(5.1)

or, equivalently,

Yt = ξ +
∫ T

t
f (s,Ys, Zs) ds −

∫ T

t
Z∗s dWs −

∫ T

t
d Ms ,(5.2)

where

• Y is an RCLL adapted process which takes values inRd.
• Z is a predictable process which takes values inRn×d.
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• M is an RCLL local martingale,Rd-valued, orthogonal to the Brownian motionW,
with M0 = 0.

Suppose thatξ belongs toLp(Rd) (i.e., the set ofFT -measurable random variable such
that ||ξ ||p = E(|ξ |p) < +∞), p > 1, and that f (t, 0, 0) belongs toHp

T (Rd) (i.e.,
|| f (·, 0, 0)||pHp = E[(

∫ T
0 | f (s, 0, 0)|2 ds|)p/2] < +∞). If f is uniformly Lipschitz, then

the parameters( f, ξ) are said to bep-standard. In what follows, we prove a result of
existence and uniqueness for solutions(Y, Z) in Hp

T (Rd) × Hp
T (Rn×d). Buckdahn (1993)

gives the most general result in this area (ifp ≥ 2), namely when the BSDE is driven by a
general continuous martingale and a predictable increasing process.

Existence and uniqueness of the solution are shown by using a fixed-point theorem (as
in Section 2), but instead of introducing a coefficientβ the contraction is first obtained
for a terminal timeT sufficiently small; then for arbitraryT , the solution is obtained by
subdividing the interval [0, T ]. While the estimates in Section 2 are stated using Itˆo’s
formula and elementary algebraic calculus, the following estimates follow from martingale
inequalities.

It is convenient to introduce the setSp
T (Rd) of the RCLL adapted processesϕ which

take values inRd and are such that‖ϕ‖p
Sp = E[sup0≤t≤T |ϕt |p] < +∞. Let us in-

troduceBp
T (Rd,Rn×d), the Banach spaceSp

T (Rd) × Hp
T (Rn×d) endowed with the norm

‖(Y, Z)‖p
p = ‖Y‖p

Sp + ‖Z‖p
Hp
= E[sup0≤t≤T |Yt |p] + E[(

∫ T
0 |Zt |2 dt)p/2]. Note that this

definition corresponds to the definition of the classical norm for semimartingales and coin-
cides with the one of Buckdahn (1993).

THEOREM5.1. Fix p > 1 and suppose that( f, ξ) are p-standard parameters. There
exist a unique pair(Y, Z) ∈ Bp

T and a unique martingale M∈ Hp
T (Rd), orthogonal to the

Brownian motion, such that(Y, Z,M) solves (5.1).

Proof. We first prove the result forT sufficiently small. Then the general case is obtained
by subdividing the interval [0, T ] into a finite number of small intervals. As in the proof of
Theorem 2.1, we use a fixed-point theorem for the mappingφ defined onBp

T which maps
(y, z) into the solution(Y, Z)of the BSDE associated with the generatorf (t, yt , zt ). In other
words,Y is the right-continuous version of the semimartingaleE[ξ+∫ T

t f (s, ys, zs) ds|Ft ],
andZ is given by the orthogonal decomposition with respect to Brownian motion for the
martingaleE[ξ + ∫ T

0 f (s, ys, zs) ds|Ft ]; that is,

E
[
ξ +

∫ T

0
f (s, ys, zs) ds|Ft

]
= Y0+

∫ t

0
Z∗s dWs + Mt ,

whereMt is an RCLL local martingale orthogonal toW.
Let us show that(Y, Z) belongs toBp

T (that is,φ mapsBp
T onto itself) and thatM is in

Hp
T (Rd). We have, for eacht , |Yt | ≤ E[|ξ | + ∫ T

0 | f (s, ys, zs)| ds|Ft ], a.s. The martingale
inequalities (Protter 1990, p. 174) give

‖Y‖p
Sp ≤ CpE

[(
|ξ | +

∫ T

0
| f (s, ys, zs)| ds

)p
]
,
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whereCp is a positive constant which depends only on the numberp. Now the Cauchy-
Schwartz inequality shows that

∫ T

0
| f (s, ys, zs)| ds≤ T1/2

(∫ T

0
| f (s, ys, zs)|2 ds

)1/2

.

It follows that for another constant, still denoted byCp,

‖Y‖p
Sp ≤ CpE

[
|ξ |p + T p/2

(∫ T

0
| f (s, ys, zs)|2 ds

)p/2
]
.(5.3)

Since f (·, 0, 0) is p-integrable andf is Lipschitz with respect toy andz, it follows easily
thatY belongs toSp

T .
We now prove thatZ belongs toHp

T (Rn×d) andM belongs toHp
T (Rd). By Burkholder-

Davis-Gundy inequalities (Protter 1990, p. 174), sincep > 1,

E

[(∫ T

0
|Zs|2 ds+ [M ]T

)p/2
]
≤ CpE

[(∣∣∣∣∫ T

0
Zs dWs + MT

∣∣∣∣)p
]
,

where [M ] is the quadratic variation of the local martingaleM . Since

MT +
∫ T

0
Z∗s dWs = ξ +

∫ T

0
f (s, ys, zs) ds − Y0,

it follows easily that

E

[(∫ T

0
|Zs|2 ds+ [M ]T

)p/2
]
≤ CpE

[
|ξ |p +

(∫ T

0
| f (s, ys, zs)| ds

)p

+ Yp
0

]
.

Using the above estimates on‖Y‖p
Sp , we obtain

‖Z‖p
Hp ≤ CpE

[
|ξ |p + T p/2

(∫ T

0
| f (s, ys, zs)|2 ds

)p/2
]
,(5.4)

E([M ] p/2
T ) ≤ CpE

[
|ξ |p + T p/2

(∫ T

0
| f (s, ys, zs)|2 ds

)p/2
]
.(5.5)

Hence,Z belongs toHp
T (Rn×d) andM is inHp

T (Rd).
It remains to show that, for a good choice ofT , φ is a contraction. Let(y1, z1) and

(y2, z2) be two elements ofBp
T and let(Y1, Z1,M1) and(Y2, Z2,M2) be the associated

solutions. Since(δY, δZ, δM) is the solution of the BSDE associated with the generator
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f (t, y1, z1)− f (t, y2, z2) and with terminal condition equal to zero, the above inequalities
give

‖δY‖p
Sp + ‖δZ‖p

Hp ≤ CpT p/2E

[(∫ T

0
| f (s, y1

s , z
1
s)− f (s, y2

s , z
2
s)|2 ds

)p/2
]
.

Then sincef is Lipschitz with respect to(y, z) with constantC, it follows that

‖δY‖p
Sp + ‖δZ‖p

Hp ≤ CpT p/2

(
E

[(∫ T

0
|δys|2 ds

)p/2
]
+ E

[(∫ T

0
|δzs|2 ds

)p/2
])

.

Hence, forT ≤ 1,

‖δY‖p
Sp + ‖δZ‖p

Hp ≤ CpT p/2(‖δy‖p
Sp + ‖δz‖p

Hp).

ChoosingT so thatCpT p/2 < 1, we have thatφ is a contraction and there exists a fixed
point (Y, Z) such that(Y, Z,M) is the uniquep-integrable solution of the BSDE. Here, by
construction, the martingaleM is given by the orthogonal decomposition with respect to
the Brownian motion of the martingale

E
[
ξ +

∫ T

0
f (s,Ys, Zs) ds|Ft

]
= Y0+

∫ t

0
Z∗s dWs + Mt .

As in the casep = 2, we can state a priori estimates.

PROPOSITION5.1. Let (( f i , ξ i ); i=1,2) be two p-standard parameters of a BSDE, and
let ((Yi , Zi ,Mi ); i = 1, 2) be the associated solutions satisfying the conditions of Theo-
rem 5.1. Let C be a Lipschitz constant for f1. PutδYt = Y1

t − Y2
t , δZt = Z1

t − Z2
t , and

δ2 ft = f 1(t,Y2
t , Z2

t ) − f 2(t,Y2
t , Z2

t ). Then for T small enough there exists a constant
Cp,T such that

‖δY‖p
Sp + ‖δZ‖p

Hp + E([δM ] p/2
T ) ≤ Cp,TE[(|δYT |p)+ (

∫ T
0 |δ2 fs| ds)p],

‖δY‖p
Sp + ‖δZ‖p

p + E([δM ] p/2
T ) ≤ Cp,T [E(|δYT |p)+ T p/2‖δ2 f ‖p

Hp ].

Proof. Consider(Y1, Z1,M1) and (Y2, Z2,M2), the two solutions associated with
( f 1, ξ1) and (f 2, ξ2). Using the same arguments as in the proof of Theorem 5.1 concerning
(δY, δZ, δM), it follows easily that, forT > 0,

‖δY‖p
Sp + ‖δZ‖p

Hp + E([δM ] p/2
T )

≤ CpE

[
(|δYT |p)+

(∫ T

0
| f 1(s,Y1

s , Z1
s)− f 1(s,Y2

s , Z2
s)| ds

)p
]
.
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Since| f 1(s,Y1
s , Z1

s)− f 2(s,Y2
s , Z2

s)| ≤ C[|δYs|+|δZs|]+|δ2 fs|, it follows that for another
constant, still denoted byCp,

‖δY‖p
Sp + ‖δZ‖p

Hp

≤ Cp

(
E[|δYT |p +

(∫ T

0
|δ2 fs| ds

)p

] + T p‖δY‖p
Sp + T p/2‖δZ‖p

p

)
.

ChoosingT so that max(CpT p,CpT p/2) < 1, we obtain

‖δY‖p
Sp + ‖δZ‖p

p ≤ Cp,TE

[
(|δYT |p)+

(∫ T

0
|δ2 fs| ds

)p
]

for a positive constantCp,T . The first inequality of Proposition 5.1 follows easily (for another
constantCp,T ). The second inequality follows from the Cauchy-Schwartz inequality.

EXAMPLE. Application in Finance: F¨ollmer-Schweizer Decomposition in Incomplete
Markets. We come back to the situation of the incomplete market as described in Section 1.3,
Example 1.3, where only some primary securities may be traded, and consider additional
constraints on the portfolio. Recall thatσ 1 denotes the volatility matrix of thej traded
securities. We assume that the matrix(σ 1

t (σ
1
t )
∗)−1σ 1

t is bounded. A nonadjusted hedging
strategy(V,1π) of a contingent claimξ ∈ Lp(Rd) satisfies

− dVt = b(t,Vt , (σ
1
t )
∗(1πt )) dt − (1πt )

∗σ 1
t dWt − d8t , VT = ξ ,(5.6)

where8 is a semimartingale inHp
T (Rd) called the cost process. Notice that the portfolio

1π is a j -dimensional process. The F¨ollmer-Schweizer strategy is related to the situation
where8 is a martingale orthogonal to

∫ .
0 σ

1
t dWt . It is easy to construct this FS-strategy as

a solution of a GBSDE.

PROPOSITION5.2. Let (b(t, x, z), ξ) be p-standard parameters and(X, Z,M) the as-
sociated p-integrable solution of

− d Xt = b(t, Xt , 6
1
t Zt ) dt − Z∗t dWt − d Mt , XT = ξ ,(5.7)

where61
t = (σ 1

t )
∗(σ 1

t (σ
1
t )
∗)−1σ 1

t . Then(X,1π,8), where1πt = (σ 1
t (σ

1
t )
∗)−1σ 1

t Zt and
d8t = ((Id−61

t )Zt )
∗ dWt + d Mt , is the F̈ollmer-Schweizer strategy.

REMARK. Example 1.3 corresponds to a Brownian filtration with

b(t, x, z) = −rt x − (θ1
t )
∗z.
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5.2. Differentiation on Wiener Space of BSDE Solutions

We study in detail the properties of differentiation on Wiener space of the solution
of a BSDE in the spirit of the work of Pardoux and Peng (1992). We state in a general
framework that the Malliavin derivative of the solution of BSDE is still a solution of a linear
BSDE. Applying these results to finance, we show in particular that the portfolio process
of a hedging strategy corresponds to the Malliavin derivative of the price process. This
important property was first emphasized by Karatzas and Ocone(1992) (see also Colwell,
Elliott, and Kopp 1991) in the nonconstrained case (i.e., the linear case).

Malliavin Derivative of Solution of BSDE.First, recall briefly the notion of differen-
tiation on Wiener space (see the expository papers by Nualart 1995, Nualart and Pardoux
1988, Ikeda and Watanabe 1989, and Ocone 1988).

• Ck
b(Rk,Rq)will denote the set of functions of classCk fromRk intoRq whose partial

derivatives of order less than or equal tok are bounded.
• Let S denote the set of random variablesξ of the formξ = ϕ(W(h1), . . . ,W(hk)),

whereϕ ∈ C∞b (Rk,R), h1, . . . , hk ∈ L2([0, T ] ; Rn), andW(hi ) = ∫ T
0 〈hi

s, dWs〉.
• If ξ ∈ S is of the above form, we define its derivative as being then-dimensional

process

Dθ ξ =
k∑

j=1

∂ϕ

∂xj
(W(h1), . . . ,W(hk))h j

θ , 0≤ θ ≤ T .

For ξ ∈ S, p > 1, we define the norm

‖ξ‖1,p =
[

E

{
|ξ |p +

(∫ T

0
|Dθ ξ |2 dθ

)p/2
}]1/p

.

It can be shown (Nualart 1995) that the operatorD has a closed extension to the space
D1,p, the closure ofS with respect to the norm‖ · ‖1,p. Observe that ifξ isFt -measurable,
thenDθ ξ = 0 for θ ∈ (t, T ]. We denote byDi

θ ξ, 1≤ i ≤ n, thei th component ofDθ ξ .
LetLa

1,p(Rd)denote the set ofRd-valued progressively measurable processes{u(t, ω),0≤
t ≤ T;ω ∈ Ä} such that

(i) For a.e.t ∈ [0, T ], u(t, ·) ∈ (D1,p)
d.

(ii) (t, ω)→ Du(t, ω) ∈ (L2([0, T ]))n×d admits a progressively measurable version.
(iii) ‖u‖a1,p = E[(

∫ T
0 |u(t)|2 dt)p/2+ (∫ T

0

∫ T
0 |Dθu(t)|2dθdt)p/2] < +∞.

Observe that for each(θ, t, ω), Dθu(t, ω) is an n × d matrix. Thus, |Dθu(t)|2 =∑
i, j |Di

θuj (t)|2. Clearly Dθu(t, ω) is defined uniquely up to sets ofdθ ⊗ dt ⊗ d P mea-

sure zero. Put‖Du‖2 = ∫ T
0

∫ T
0 |Dθu(t)|2 dθ dt. With this notation notice that Jensen’s

inequality gives

E(‖Du‖2)p/2 ≤ T p/2−1
∫ T

0
‖Dθu‖p

p dθ, p ≥ 2,(5.8)
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E(‖Du‖2)p/2 ≥ T p/2−1
∫ T

0
‖Dθu‖p

p dθ, p ≤ 2.(5.9)

We now show that under natural conditions the solution of a BSDE is differentiable
in Malliavin’s sense and that the derivative is a solution of a linear BSDE. This result
generalizes the one stated by Pardoux and Peng (1992) in the Markovian case, and we give
a complete proof of it.

PROPOSITION5.3. Suppose thatξ ∈ D1,2 and f: Ä × [0, T ] × Rd × Rn×d → Rd is
continuously differentiable in(y, z), with uniformly bounded and continuous derivatives
and such that, for each(y, z), f (·, y, z) is in La

1,2(Rd) with Malliavin derivative denoted
by Dθ f (t, y, z). Let(Y, Z) be the solution of the associated BSDE. Also, suppose that

• f (t, 0, 0) ∈ H4
T (Rd) andξ ∈ L4(Rd).

• ∫ T
0 E(|Dθ ξ |2) dθ < +∞,

∫ T
0 ‖Dθ f (t,Y, Z)‖22 dθ < +∞, and for any t∈ [0, T ]

and any(y1, z1, y2, z2),

|Dθ f (t, ω, y1, z1)− Dθ f (t, ω, y2, z2)| ≤ Kθ (t, ω)(|y1− y2| + |z1− z2|),

where for a.e.θ , {Kθ (t, ·), 0 ≤ t ≤ T} is anR+-valued adapted process satisfying∫ T
0 ‖Kθ‖44 dθ < +∞.

Then(Y, Z) ∈ L2(0, T ; (D1,2)d × (D1,2)n×d), and, for each1 ≤ i ≤ n, a version of
{(Di

θYt , Di
θ Zt ) ; 0≤ θ, t ≤ T} is given by

Di
θYt = 0, Di

θ Zt = 0, 0≤ t < θ ≤ T ;

Di
θYt = Di

θ ξ +
∫ T

t

[
∂y f (s,Ys, Zs)D

i
θYs + ∂z f (s,Ys, Zs)D

i
θ Zs + Di

θ f (s,Ys, Zs)
]

ds

−
∫ T

t
Di
θ Zs dWs, θ ≤ t ≤ T.

Moreover,{DtYt ; 0≤ t ≤ T} defined by (ii) is a version of{Zt ; 0≤ t ≤ T}.

REMARK. If Kθ is bounded, it is sufficient to suppose thatf (t, 0, 0) ∈ H2
T (Rd) and

ξ ∈ L2
T (Rd). Furthermore, the fact thatDtYt = Zt reveals the relation between the

wealth process and the related portfolio. This result provides an efficient tool to estimate
E
[
supt |Zt |p

]
for p ≥ 2.

Before giving the proof of this proposition, let us recall the following lemma stated by
Pardoux and Peng (1992), which shows that an Itˆo integral is differentiable in the Malliavin
sense if and only if its integrand is so. For the proof, see Pardoux and Peng (1992) or
Nualart (1995, Lemma 1.3.4), but this lemma is a consequence of the commutation relation
between the derivative and the Skohorod integral (Nualart 1995, Section 1.3).
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LEMMA 5.1. Let Z ∈ H2
T (Rn) be such thatξ = ∫ T

t Z∗s dWs satisfiesξ ∈ D1,2. Then
Zi ∈ L2(t, T,D1,2), 1≤ i ≤ n, and dθ ⊗ dP a.s.,

Di
θ ξ =

∫ T

t
Di
θ Zr dWr , θ ≤ t,

Di
θ ξ = Zi

θ +
∫ T

θ

Di
θ Zr dWr , θ > t.

Proof of Proposition 5.3. To simplify notation we restrict ourselves to the cased = 1.
Let (Yk, Zk) be the Picard iterative sequence defined recursively byY0 = 0, Z0 = 0 and

−dYk+1
t = f (t,Yk

t , Zk
t ) dt − (Zk+1

t )∗ dWt , Yk+1
T = ξ .

Using the contraction mapping defined in the proof of Theorem 5.1, we know that the
sequence(Yk, Zk) converges inS4

T (R) ⊗ H4
T (Rn) to (Y, Z) as k → +∞, the unique

solution of the BSDE.
We recursively show that(Yk, Zk) ∈ L2(0, T ; D1,2× (D1,2)n). Suppose that(Yk, Zk) ∈

L2(0, T ; D1,2× (D1,2)n) and let us show that(Yk+1, Zk+1) is inL2(0, T ; D1,2× (D1,2)n).
Sinceξ+∫ T

t f (s,Yk
s , Zk

s) ds∈ D1,2, thenYk+1
t = E[ξ+∫ T

t f (s,Yk
s , Zk

s) ds|Ft ] ∈ D1,2.

Now, ξ + ∫ T
t f (s,Yk

s , Zk
s) ds− Yk+1

t = ∫ T
t (Z

k+1
s )∗ dWs. It follows from Lemma 5.1 that

Zk+1 ∈ L2(0, T, (D1,2)n), and for 0≤ θ ≤ t, 1≤ i ≤ n,

−d Di
θY

k+1
t = [∂y f (t,Yk

t , Zk
t )D

i
θY

k
t + ∂z f (t,Yk

t , Zk
t )D

i
θ Zk

t + Dθ f (t,Yk
t , Zk

t )] dt

− (Di
θ Zk+1

t )∗ dWt ,

Di
θY

k+1
T = Di

θ ξ .

Hereafter, to simplify notation we assume that the Brownian is one-dimensional.
We will show that(DθYk, Dθ Zk) converges to(Yθ , Zθ ) in La

1,2 (= L2(0, T ; D1,2 ×
D1,2)), where(Yθ

t , Zθt , θ ≤ t ≤ T) is the solution of the BSDE.

−dYθt = [∂y f (t,Yt , Zt )Y
θ
t + ∂z f (t,Yt , Zt )Z

θ
t + Dθ f (t,Yt , Zt )] dt − Zθt dWt ,(5.10)

Yθ
T = Dθ ξ.

First, we have that
∫ T

0 (‖Yθ‖2S2 + ‖Zθ‖22) dθ < +∞. Indeed, the a priori estimates applied
to Y1 = Yθ andY2 = 0 give, for a constantC,

‖Yθ‖2S2 + ‖Zθ‖22 ≤ CE
(|Dθ ξ |2+ ‖Dθ f (·,Y, Z)‖22

)
.
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We now turn back to our problem. Using the a priori estimates, we obtain for almost all
θ ∈ [0, T ] that

‖DθY
k+1− Yθ‖2S2 + ‖Dθ Zk+1− Zθ‖22 ≤ CE

[(∫ T

θ

|δk
s | ds

)2
]
,

where

δk
s = Dθ f (s,Ys, Zs)− Dθ f (s,Yk

s , Zk
s)+ ∂y f (s,Ys, Zs)Y

θ
s

−∂y f (s,Yk
s , Zk

s)DθY
k
s + ∂z f (s,Ys, Zs)Z

θ
s − ∂z f (s,Yk

s , Zk
s)Dθ Zk

s .

NowE(
∫ T
θ
|δk

s | ds)2 ≤ C(Aθk(T)+ Bθk (T)+ Cθ
k (T)), where

Aθk(T) = E
(∫ T

θ

|Dθ f (s,Ys, Zs)− Dθ f (s,Yk
s , Zk

s)| ds

)2

,

Bθk (T) = E
(∫ T

θ

|∂y f (s,Yk
s , Zk

s)(Y
θ
s − DθY

k
s )| ds

)2

+E
(∫ T

θ

|∂z f (s,Yk
s , Zk

s)(Z
θ
s − Dθ Zk

s)| ds

)2

,

Cθ
k (T) = E

(∫ T

θ

|(∂y f (s,Ys, Zs)− ∂y f (s,Yk
s , Zk

s))Y
θ
s | ds

)2

+E
(∫ T

θ

|(∂z f (s,Ys, Zs)− ∂z f (s,Yk
s , Zk

s))Z
θ
s | ds

)2

.

Moreover,Aθk(T) ≤ E(
∫ T
θ
|Kθ (s)|(|Ys− Yk

s | + |Zs− Zk
s |) ds)2. By the Cauchy-Schwartz

inequality,

E
(∫ T

θ

|Kθ (s)|
(|Ys − Yk

s |
)

ds

)2

≤
(
E
(∫ T

θ

Kθ (s)
2 ds

)2
)1/2(

E
(∫ T

θ

|Ys − Yk
s |2 ds

)2
)1/2

.

Hence,Aθk(T) ≤ ‖Kθ‖24
(‖Y − Yk‖24+ ‖Z − Zk‖24

)
.

Since(Yk, Zk) converges to(Y, Z) in B4, it follows that limk→+∞(‖Y − Yk‖24 + ‖Z −
Zk‖24) = 0. Therefore,

lim
k→+∞

∫ T

0
Aθk(T) dθ = 0.
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Furthermore, since∂y f and ∂z f are bounded and continuous with respect toy and z

and since
∫ T

0 (‖Yθ‖2S2 + ‖Zθ‖22) dθ < +∞, it follows by the Lebesgue theorem that

limk→+∞
∫ T

0 Cθ
k (T) dθ = 0.

Next, since the derivatives off are bounded,

Bθk (T) ≤ CT2‖DθY
k − Yθ‖2S2 + CT‖Dθ Zk − Zθ‖22.

ChooseT so thatα = max(CT2,CT) < 1. Fix a positive realε > 0. There existsN > 0
such that, for anyk ≥ N,

∫ T

0
(‖DθY

k+1− Yθ‖2S2 + ‖Dθ Zk+1− Zθ‖22) dθ

≤ ε + α
∫ T

0

(‖DθY
k − Yθ‖2S2 + ‖Dθ Zk − Zθ‖22

)
dθ .

Thus, we recursively obtain, for everyk ≥ N,

∫ T

0
(‖DθY

k − Yθ‖2S2 + ‖Dθ Zk − Zθ‖22) dθ

≤ ε

1− α + α
k
∫ T

0

(‖DθY
0− Yθ‖2S2 + ‖Dθ Z0− Zθ‖22

)
dθ

≤ ε

1− α + α
kK ,

whereK is a positive constant. Hence, since 0≤ α < 1, it follows that the sequence
(DθYk, Dθ Zk) converges inL2(0, T ; (D1,2)2) = La

1,2 to (Yθ , Zθ ). Consequently, since
La

1,2 is closed for the norm‖ · ‖a1,2, it follows that the limit(Y, Z) belongs toLa
1,2 and that

a version of(DθY, Dθ Z) is given by(Yθ , Zθ ).
It remains to show that for the considered version of the Malliavin derivatives ofY and

Z, DsYs = Zs. Notice that fort ≤ s,

Ys = Yt −
∫ s

t
f (r,Yr , Zr ) dr +

∫ s

t
Zr dWr .

It follows from Lemma 5.1 that, fort < θ ≤ s,

DθYs = Zθ −
∫ s

θ

[∂y f (r,Yr , Zr )DθYr + ∂z f (r,Yr , Zr )Dθ Zr + Dθ f (r,Yr , Zr )] dr

+
∫ s

θ

Dθ Zr dWr .

Then, by takingθ = s, it follows thatDsYs = Zs a.s.
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REMARK. This result can be easily generalized from the casep = 2 to the casep ≥ 2
(but not 1< p < 2) by using the same arguments and inequality (5.8).

Application to the Linear Case.The notation is the same as in the section on linear
BSDEs ((2.8)). Let(β, γ ) be a bounded (R,Rn)-valued predictable vector process,ϕ an
element ofH2

T (R), andξ an element ofL2
T (R). Then we consider the solution(Y, Z) of

the BSDE

− dYt = [ϕt + Yt βt + Z∗t γt ] dt − Z∗t dWt , YT = ξ .(5.11)

From Proposition 5.3, we obtain:

PROPOSITION5.4. Suppose

• β, γ ∈ La
1,4, ϕ ∈ H4

T ∩ La
1,2, andξ ∈ L4 ∩ D1,2.

• ∫ T
0 E(|Dθ ξ |2) dθ < +∞,

∫ T
0 ‖Dθϕ‖22 dθ < +∞, and

∫ T
0 (‖Dθβ‖44+‖Dθγ ‖44) dθ <

+∞.

Then(Y, Z) ∈ L2(0, T ; (D1,2)d × (D1,2)n×d), and, for each1 ≤ i ≤ n, a version of
{(Di

θYt , Di
θ Zt ) ; 0≤ θ, t ≤ T} is given by

(i) Di
θYt = 0, Di

θ Zt = 0, 0≤ t < θ ≤ T ;
(ii) Di

θYt = Di
θ ξ +

∫ T

t

[
βsDi

θYs + γsDi
θ Zs + Di

θϕs + YsDi
θβs + Z∗s Di

θγs
]

ds

−
∫ T

t
Di
θ Zs dWs, θ ≤ t ≤ T.

Moreover,{DtYt ; 0≤ t ≤ T} defined by(ii) is a version of{Zt ; 0≤ t ≤ T}.

REMARK. If the coefficientsβ andγ are bounded deterministic functions, it is sufficient
to suppose thatϕ ∈ H2

T ∩ La
1,2 andξ ∈ L2 ∩ D1,2.

Recall that from Proposition 2.2,Y can be written

Yt = E
[
0t,Tξ +

∫ T

t
0t,sϕs ds|Ft

]
,(5.12)

where(0t,s, t ≤ s ≤ T) is the adjoint process defined by the forward LSDE,

d0t,s = 0t,s[βs ds+ γ ∗s dWs], 0t,t = 1.

Our aim is now to obtain a similar expression forZt and, more generally, sinceZt = DtYt ,
an expression forDθYt . Recall that it is possible to derive in the Malliavin sense a conditional
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expectation (see Nualart 1986, p. 91); hence, from (5.12) it follows that, forθ ≤ t ≤ T ,

DθYt = E
[

Dθ

(
0t,Tξ +

∫ T

t
0t,sϕs ds

)
|Ft

]
.

Furthermore, by natural properties on the Malliavin derivative,

Dθ

(
0t,Tξ +

∫ T

t
0t,sϕs ds

)
= Dθ (0t,T )ξ + 0t,T Dθ ξ

+
∫ T

t
Dθ (0t,s)ϕs ds+

∫ T

t
0t,s Dθϕs ds.

Consequently, we obtain the following (natural) property.

PROPOSITION5.5. For θ ≤ t ≤ T ,

DθYt = E
[
0t,T Dθ ξ + Dθ0t,T ξ +

∫ T

t
(0t,sDθϕs + Dθ0t,s ϕs) ds|Ft

]
.

Actually Karatzas and Ocone (1992) gave another type of expression forDY. Let us
show this property in our context. Recall first thatDY can also be written using the adjoint
process0, because(DθY, Dθ Z) is a solution of a linear BSDE similar to that of(Y, Z): for
θ ≤ t ≤ T ,

Di
θYt = E

[
0t,T Di

θ ξ +
∫ T

t
0t,s(D

i
θϕs + YsDi

θβs + Z∗s Di
θγs) ds|Ft

]
.(5.13)

Applying this property, we obtain the following representation formula established by
Karatzas and Ocone (in the caseϕ = β = 0) (Karatzas and Ocone 1992, formula 2.20,
Theorem 2.5, and Corollary 2.6) under very weak integrability conditions (ξ ∈ D1,1, γ ∈
La

1,1, · · ·).

PROPOSITION5.6. For θ ≤ t ≤ T ,

DθYt = E
[
0t,T Dθ ξ +

∫ T

t
0t,s(Dθϕs + YsDθβs) ds

+
(
0t,Tξ +

∫ T

t
0t,sϕs ds

)(∫ T

t
Dθγ

∗
s dWs

)
|Ft

]
.

Proof. Since0t,Tξ +
∫ T

t 0t,sϕs ds= Yt +
∫ T

t 0t,sZ∗s dWs, we have

E
[(
0t,Tξ +

∫ T

t
0t,sϕs ds

)(∫ T

t
Dθγs dWs

)
|Ft

]
= E

[∫ T

t
0t,sZ∗s Dθγs ds|Ft

]
.
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The result follows from (5.13).

Application to Example 1.1, Section 1.3.We come back to Example 1.1 seen in Sec-
tion 1.3 (hedging claims with a higher interest rate for borrowing) and studied by Cvitanic
and Karatzas (1993) under slightly different assumptions. Recall that in this example the
hedging strategy(X, π) (wealth, portfolio) satisfies

d Xt = rt Xt dt + π∗t σtθt dt + π∗t σt dWt − (Rt − rt )(Xt − π∗t 1)− dt, XT = ξ .

Let (XR, σ ∗π R) be the solution of the LBSDE

d XR
t = rt XR

t dt + (π R
t )
∗σtθt dt(5.14)

+ (π R
t )
∗σt dWt − (Rt − rt )(X

R
t − (π R

t )
∗1) dt , XR

T = ξ.

Notice thatXR is equal to the ex post priceX(β,γ ) (defined in the example studied in
Section 3.3) forβt = Rt andγt = σtθt + (rt − βt )1, dP⊗ dt a.s.

It is interesting to find a sufficient condition which ensures thatX is equal toXR. Actually,
it is easy to see that it is sufficient to have

(π R
t )
∗1≥ XR

t , dP⊗ dt a.s.(5.15)

Recall now that, by Proposition 5.3,π is also a function ofX given byπt = (σ ∗t )−1Dt Xt ,
dP⊗dt a.s., where(Du Xt , 0≤ u ≤ t ≤ T) denotes the version of the Malliavin derivative
of the processX defined in Proposition 5.3. It follows that (5.15) can also be written as

1∗(σ ∗u )
−1Du XR

t ≥ XR
u , dP⊗ du a.s.

Using the comparison theorem and the Malliavin calculus, we state the following proposi-
tion, which generalizes a property obtained by Cvitanic and Karatzas (1993).

PROPOSITION5.7. Suppose that the coefficients rt , Rt , bt , and σt are deterministic
functions of t and suppose thatξ ∈ D1,2. If 1∗(σ ∗u )

−1Duξ ≥ ξ , dP⊗du a.s., then the price
for ξ is X = XR.

Proof. In order to show the proposition, it is sufficient to prove that1∗(σ ∗u )
−1Du XR

t
≥ XR

u , dP⊗ du a.s. Recall first that(XR, π R) is solution of the BSDE

−d XR
t = [−Rt XR

t − (π R
t )
∗(σtθt + (rt − Rt )1)] dt − (π R

t )
∗σt dWt ,

XR
T = ξ.(5.16)

By Proposition 5.3,(XR, π R) ∈ L2(0, T ; (D1,2)× (D1,2)n), and, for 1≤ i ≤ n, a version
of {(Di

u XR
t , Di

uπ
R
t ) ; 0≤ u ≤ t ≤ T} is

−d Di
u XR

t = −Rt Di
u XR

t − (Di
uπ

R
t )
∗(σtθt + (rt − Rt )1) dt − (Di

uπ
R
t )
∗σt dWt ,

Di
u XR

T = Di
uξ .

(5.17)
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PutYu
t = 1∗(σ ∗u )

−1Du XR
t andZu

t = (Duπ
R
t )(σu)

−11, for 0 ≤ u ≤ t ≤ T . We easily see
that(Yu

t , Zu
t , u ≤ t ≤ T) is the solution of the BSDE

−dYu
t = −RtYu

t − (Zu
t )
∗(σtθt + (rt − Rt )1) dt − (Zu

t )
∗σt dWt ,

Yu
T = 1∗(σ ∗u )

−1Duξ .
(5.18)

Then applying the comparison theorem to(XR, π R) and (Yu, Zu), we have thatYu
u ≥

XR
u , dP, a.s., and the result easily follows.

From this proposition we deduce the property stated by Cvitanic and Karatzas (1993,
Example 9.5).

PROPOSITION5.8. Suppose the coefficients are deterministic functions of t and letξ ≥ 0
be a contingent claim of the formξ = ψ(PT ), whereψ is a given functionψ : Rn → R+
of class C1 with bounded derivative and such that

∑n
i=1 xi ∂xiψ(x) ≥ ψ(x) (for example,

if ψ is a convex function of class C1 with ψ(0) = 0, this condition is satisfied). Then
Xt = XR

t , 0≤ t ≤ T , a.s.

Proof. By the chain rule,

D j
t ξ =

n∑
i=1

∂xiψ(PT )D
j
t (P

i
T ) =

n∑
i=1

∂xiψ(PT )P
i
Tσi, j (t).

Hence,(σ ∗t )
−1Dtξ =

(
∂xiψ(PT )Pi

T

)
and the result follows from Proposition 5.7.

REMARK. The result still holds for the classical European optionξ = (P1
T − K )+ where

K is a real (positive) constant, if the law of the random variableP1
T is absolutely continuous

with respect to the Lebesgue measure onR ( recall that this condition is satisfied under some
nondegeneracy conditions on the coefficients; see Nualart 1995, Theorem 2.3.2). Indeed,
in this case,ψ is given byψ(x) = (x−K )+. ψ is of classC1 on ]−∞, K [ and ]K ,+∞[
andφ′(x) ≥ 0 for anyx 6= K . Recall that the chain rule still holds in this case (Nualart
1995, Proposition 1.23), since the law of the random variableP1

T is absolutely continuous
with respect to Lebesgue measure. Consequently, the result follows from Proposition 5.7.
Thus, the contingent claim is evaluated under a current rateR and a risk premium equal
to θt + (rt − Rt )σ

−1
t 1. Notice that ifσ = I , the risk premium is lower than the primitive

oneθ .

Application to the Markovian Case.In this section we consider the BSDE associated
with a forward equation defined in Section 4.1. By the results of Section 5.2 we have
that if the coefficients are differentiable, then the solution(Yt,x

s , Zt,x
s ) is differentiable in

Malliavin’s sense.



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 67

PROPOSITION5.9. If the coefficients b, σ, f , and9 are continuously differentiable with
respect to(x, y, z) with uniformly bounded derivatives, then

• For any0 ≤ t ≤ s ≤ T , x ∈ Rp, and(Yt,x
s , Zt,x

s ) ∈ L2(0, T ; (D1,2)d × (D1,2)n×d),
and for each1≤ i ≤ n a version of{(Di

θYs, Di
θ Zs) ; 0≤ θ, t ≤ s ≤ T} is given by

Di
θYs = 0, Di

θ Zs = 0, 0≤ θ < t ≤ T or s< θ ≤ T;

and for t≤ θ ≤ T , {(Di
θYs, Di

θ Zs) ; θ ≤ s ≤ T} satisfies the following LBSDE:

− d Di
θYs = [∂y f (s, Ps,Ys, Zs)D

i
θYs + ∂z f (s, Ps,Ys, Zs)D

i
θ Zs] ds(5.19)

+∂x f (s, Ps,Ys, Zs)D
i
θ Ps ds − Di

θ Zs
∗ dWs,

Di
θYT = 9 ′(PT )D

i
θ PT .

Moreover,{DsYs ; t ≤ s ≤ T} defined by (5.19) is a version of{Zs ; t ≤ s ≤ T}.
• For any0≤ t ≤ s ≤ T, x ∈ Rp,

Zt,x
s = ∂xYt,x

s (∂x Pt,x
s )−1σ(s, Pt,x

s ), ds⊗ dPa.s.

Proof. First, recall that for any 0≤ t ≤ s ≤ T , x ∈ Rp, (Pt,x
s ) ∈ L2(0, T ; (D1,2)p),

and for each 1≤ i ≤ n, a version of{Di
θ Pt,x

s ; 0 ≤ θ, t ≤ s ≤ T} is given byDi
θ Pt,x

s =
0, 0≤ θ < t , and, fort ≤ θ , {Di

θ Pt,x
s ; θ ≤ s ≤ T} is the unique solution of the linear SDE

d Di
θ Ps = ∂xb(s, Ps) Di

θ Ps ds + ∂xσj (s, Ps) Di
θ Ps dWj

s , Di
θ Pθ = σi (θ, Pθ ) .

Moreover, from the uniqueness of the solution of the SDE satisfied byDθ P, it follows that

Dθ Ps = ∂x Ps(∂x Pθ )
−1σ(θ, Pθ ) , t ≤ θ ≤ s ≤ T ,P a.s.(5.20)

Recall now that supt≤s≤T (|Pt,x
s | + |∂x Pt,x

s |) ∈ Lp for any p ≥ 1. Then, using the assump-
tions made on the coefficients, we see that the hypotheses of Proposition 5.3 are satisfied,
so the first statement of the proposition is proved.

It remains to show the second one. The uniqueness of the solution of BSDE (5.19) and
(5.20) yieldDi

θYs = ∂xYs(∂x Pθ )−1σi (θ, Pθ )or, equivalently,DθYs = ∂xYs(∂x Pθ )−1σ(θ, Pθ ).
Hence, by takingθ = s, DsYs = ∂xYs(∂x Ps)

−1σ(s, Ps). By the first statement,Zs = DsYs

almost surely. The second statement now easily follows.
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ANSEL, J. P., and C. STRICKER (1992b): “Unicité et Existence de la Loi Minimale,”Śem. de Proba-
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