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We are concerned with different properties of backward stochastic differential equations and their
applications to finance. These equations, first introduced by Pardoux and Peng (1990), are useful
for the theory of contingent claim valuation, especially cases with constraints and for the theory of
recursive utilities, introduced by Duffie and Epstein (1992a, 1992b).
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0. INTRODUCTION

We are concerned with backward stochastic differential equations (BSDE) and with their
applications to finance. These equations were introduced by Bismut (1973) for the linear
case and by Pardoux and Peng (1990) in the general case. According to these authors, the
solution of a BSDE consists of a pair of adapted proce€geg) satisfying

(0.2) —dYi = f(t. Y, Zodt— ZidWs Y =&,

where f is the generator andis the terminal condition.

Actually, this type of equation appears in numerous problems in finance (as pointed out
in Quenez’s doctorate 1993). First, the theory of contingent claim valuation in a complete
market studied by Black and Scholes (1973), Merton (1973, 1991), Harrison and Kreps
(1979), Harrison and Pliska (1981), Duffie (1988), and Karatzas (1989), among others,
can be expressed in terms of BSDEs. Indeed, the problem is to determine the price of a
contingent claint > 0 of maturity T, which is a contract that pays an amogrdat time
T. In a complete market it is possible to construct a portfolio which attains as final wealth
the amount. Thus, the dynamics of the value of the replicating portfdiare given
by a BSDE with linear generatdtr, with Z corresponding to the hedging portfolio. Then
the price at time is associated naturally with the value at titnef the hedging portfolio.
However, there exists an infinite number of replicating portfolios and consequently the
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price is not well defined. But arbitrage pricing theory imposes some restrictions on the
integrability of the hedging portfolios. In general, these assumptions are related to a risk-
adjusted probability measure. Using BSDE theory, we will show that the problem is well
posed—that is, there exist a unique price and a unique hedging portfolio—by restricting
admissible strategies to square-integrable ones under the primitive probability.

On the other hand, the pricing theory has been studied in the context of an incomplete
market by Bllmer and Schweizer (1990) and El Karoui and Quenez (1995). In this situation
it is not always possible to construct a portfolio which attains exactly as final wealth the
amount¢, and the price cannot be determined by no-arbitrage arguments. The replication
error is called the tracking error. El Karoui and Quenez (1995) only considered superstrate-
gies, which are strategies with a positive tracking error, and defined the upper price for each
contingent claint as the smallest investment which allows one to superhedge the contin-
gent claimé. They showed that the upper price is equal to the value function of a control
problem. Using this dual characterization, they stated that the upper price corresponds to a
superstrategy. The upper price process is not a solution of a BSDE, but it can be written as
the increasing limit of penalized price processes which are solutions of nonlinear BSDEs.
We shall see that the duality between the hedging problem and the pricing one, emphasized
by El Karoui and Quenez (1995), corresponds to a general duality between convex BSDEs
and some control problems.

Concerning this problem of pricing a contingent cl&iin an incomplete market,diimer
and Schweizer (1990) introduced the notion of local risk-minimizing strategies, for which
the tracking error is a square-integrable martingale orthogonal to the basic securities. We
show that this pricing rule corresponds to a standard valuation in a market where only the
traded securities have a return different from the spot rate. The prigadaitill a solution
of a linear BSDE.

Recall that the results stated by El Karoui and Quenez (1995) for the constrained case of
an incomplete market were generalized to convex constraints on the portfolios by Cvitanic
and Karatzas (1992). Other nonlinear backward equations were introduced by those authors
for the hedging problem with a higher interest rate for borrowing. Inthis case, the dynamics
of the wealth process are given by a nonlinear convex BSDE.

Duffie and Epstein (1992a, 1992b) presented a stochastic differential formulation of
recursive utility in the case of information generated by Brownian motion. Recursive utility
is an extension of the standard additive utility with the instantaneous utility depending not
only on the instantaneous consumption rgtéut also on the future utility. Actually, it
corresponds to the solution of a particular BSDE associated with a genératuch does
not depend oz. Duffie and Epstein showed that, under Lipschitz conditions, the recursive
utility exists and satisfies the usual properties of standard utilities (concavity with respect to
consumption if the BSDE is concave). The BSDE point of view gives a simple formulation
of recursive utilities and their properties.

In this paper we summarize the results on existence and uniqueness by Pardoux and Peng
(1990) and give new (shorter) proofs. We state some a priori estimates of the difference
between the solutions of two BSDEs; the existence and uniqueness of the solution of a
BSDE follow from a fixed-point theorem. Also, we recall that one of the most important
properties of BSDEs is a comparison theorem which can be obtained under quite general
conditions. For example, this theorem gives a sufficient condition for the wealth process to
be nonnegative and yields the classical properties of utilities.

Also, BSDEs with concave (or convex) generators are associated by duality with the
value function of a control problem. Thus, the duality introduced by El Karoui and Quenez
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(1991, 1995) in the hedging and pricing problem in a constrained case can be generalized
to other cases such as recursive utilities. This result gives an interesting interpretation of
recursive utilities of consumption: the utility can be expressed as the minimum of ex post
utilities over all possible future price deflators. Actually, this variational formulation of
recursive utilities had been introduced by Geoffard (1995) in a deterministic framework.
Moreover, this result can be applied to European option pricing. In some constrained cases
the price of a contingent claim is given by the solution of a nonlinear convex BSDE. As the
utility function, the price can be written as the maximum of “ex post” prices taken over all
changes of “numeraire” feasible for the wealth; also the set of controls is bounded and the
maximum is attained for an optimal change of numeraire.

Furthermore, we are concerned with the solution of BSDESs associated with a state process
satisfying some forward classical SDEs. The main property is that the solution is Markovian
in the sense that it can be written as a function of time and a state process. Important
results concerning the link between those BSDEs and PDEs have been stated by Pardoux
and Peng (1992) and Peng (1991, 1992a, 1992b, 1992c) in the Markovian case; these
Markovian BSDEs give a Feynman-Kac representation of some nonlinear parabolic partial
differential equations. Conversely, under smoothness assumptions the solution of the BSDE
corresponds to the solution of a system of quasilinear parabolic PDEs. These results
can be applied to European option pricing in the constrained Markovian case and give a
generalization of the Black and Scholes formula.

The outline of the paper is as follows. In the first section we give some examples of
BSDEs which appear naturally in the problem of pricing and hedging contingent claims.
Actually, the dynamics of wealth processes can be written as a BSDE; these equations
are linear in the classical case and nonlinear (but convex) in the case of constraints on the
portfolio. Another example is given by the stochastic differential formulation of recursive
utilities introduced by Duffie and Epstein (1992a, 1992b).

In Section 2 we present some important results for BSDEs: a priori estimates of the
difference between two solutions, existence and uniqueness, a comparison theorem, and
supersolutions. Also, we study the properties of continuity and differentiability of the
solutions of BSDESs with respect to parameters, properties which follow essentially from
the a priori estimates. Finally, we give the flow properties of BSDEs.

In Section 3 we study the properties of concave (or convex) BSDEs. We show that, in this
case, the solution of the BSDE can be written as the value function of a control problem.
Then we give some applications of these results to finance.

In Section 4 we study different properties of the solution of a BSDE associated with
some forward SDEs (regularity, measurability), and, in particular, we prove under very
weak assumptions that the solution only depends on time and the state process. Then we
recall different results concerning the link between these solutions and some PDEs, and we
give a simple application to European option pricing in the constrained case.

In Section 5 we give some complementary results on BSDEs. First, we solve the BSDE
in the case of a non-Brownian filtration and ungeimtegrability assumptionsp( > 1).
Second, we study in detail the properties of differentiation on Wiener space of the solution
of a BSDE in the spirit of the work of Pardoux and Peng (1992). Applying these results
to finance, we show that the portfolio process of a hedging strategy corresponds to the
Malliavin derivative of the price process. This important property was first emphasized by
Karatzas and Ocone (1992) in the nonconstrained case (i.e., the linear case).
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1. BACKWARD DIFFERENTIAL EQUATIONS IN FINANCE
1.1. The Model

We begin with the typical setup for continuous-time asset pricing: the basic securities
consist oin+ 1 assets. One of them is a locally riskless asset (the money market instrument
or bond) with price per uniP® governed by the equation

(1.1) dR® = PO dt,

wherer, is the short rate. In addition to the bona,risky securities (the stocks) are
continuously traded. The price proceBsfor one share ofth stock is modeled by the
linear stochastic differential equation

(1.2) dP = P [b{dt + > o) de},
j=1
whereW = (W1, ..., W")* is a standard Brownian motion &f, defined on a probability

space(2, F,P). P is said to be the “objective” probability measure. The information
structure is given by a right-continuous filtratiof; ; 0 <t < T). Usually, (%) is the
o-algebra generated by the Brownian motih= (W, ..., W")* and augmentet.We
make the following standard assumptions.

HYPOTHESIS1.1.

The short rate is a predictable and bounded process. It is generally nonnegative.
The column vector of the stock appreciation rdies (b', ..., b")* is a predictable
and bounded process.

e The volatility matrixoc = (¢'-)) is a predictable and bounded process.has full
rank a.s. for alt [0, T] and the inverse matrix ~* is a bounded process.

e There exists a predictable and bounded-valued process ¥ectited a risk premium,
such that

by —rl = o164, dP ® dt a.s,

wherel is the vector whose every component is 1.

Under these assumptions the market is dynamically complete.

2The augmented Brownian filtratidn = {(1),t € [0, T]} is defined by/ = o (FN U 2), where FV =
o (Ws; s € [0, t]) is the smallest -field with respect to which\Vs is measurable for eves/e [0, t]andZ = {E C
Q;3G € F, E c G, P(G) = 0} denotes the set dP-null events. It is well known that the augmented filtration
is continuous and thaW is still a Brownian motion with respect to it (Karatzas and Shreve 1987, Corollary 2.7.8.
and Proposition 2.7.9).

All the stochastic processes to appear in the sequel are progressively measurable with rdspaittthe
equalities involving random variables are understood toRalds., and the equalities involving stochastic processes
are understood to holdlP ® dt a.s. Sometimes we shall refer to the following notion of equality between two
processes: two process¥sandY are said to be indistinguishable(ib, 3t < [0, T] X;(w) # Yi(w)} is alP-null
set. The same definitions hold for the inequalities.
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Let us consider a small investor whose actions cannot affect market prices and who
can decide at time € [0, T] what amountr{ of the wealthV; to invest in theith stock,
i =1,...,n. Inthe Merton model (1971), he also chooses his consumgt{@ctuallyc; is
the positive rate of consumption at tije Of course, his decisions can only be based on the
current information %); i.e., the processes = (7,72, ..., 7", 7%=V =3 =,
andc are predictable. Following Harrison and Pliska (1981), we say a strategy is self-
financing if the wealth process = Y , 7! satisfies the equality

t.n -dPti

i=0

or, equivalently, if the wealth process satisfies the linear stochastic differential equation
(LSDE)

dvi = % dt+ﬂt*(b[ — It 1)dt+nt*0tdW[
= dt+JTt*O't[d\M + 6 dt]

In the Merton model the equation becomes
dVt =reVedt — ¢ dt + JTt*O't[dW + 6; dt]

More precisely,

DerFINITION 1.1, Aself-financindgradingstrategy is apaitV, 7 ), whereV is the market
value andr = (1,..., #™)* is the portfolio process, such thdt, ) satisfies

.
(1.3)  dVt =V dt 4 7fo [dW + 6, dt], / loym|?dt < 400 ,Pa.s.
0

The strategy is callefiasibleif the constraint of nonnegative wealth holds:

Vi > 0, t €[0, T], Pas.

REMARK. Generally, the initial wealtk is taken as a primitive, and for an initial endow-
mentx and portfolio process there exists a unique (continuous) wealth process that is a
solution of (1.3) with initial valuévy = X, since the processis bounded. There exists a
useful one-to-one correspondence between the(pgi= X, ) and the trading strategy
vV, m).

To extend this formulation to the Merton model, we choose to introduce the cumulative
amount of consumption between 0 andamelyC; = fot Cs ds, and still refer to the Merton
model even if the adapted increasing consumption pragassiot absolutely continuous.
Instead of a consumption process, this process can sometimes be interpreted as the liquidity
necessary to satisfy some constraints.



6 N.EL KAROUI, S. PENG, AND M. C. QUENEZ

DerINITION 1.2. A self-financinguperstrategys a vector proces®/, =, C), whereV
is the market value (or wealth process)is the portfolio process, ard is the cumulative
consumption process, such that

T
(14) d\/t =r:\4 dt — dC[ + ﬂt*G[[dW + 6; dt] s / |O't*7'[t|2dt < 400, Pa.s,
0

andC is an increasing, right-continuous, adapted process @4tk 0. The superstrategy
is calledfeasibleif the constraint of nonnegative wealth holds:

Vy > 0, t [0, T],P a.s.

1.2. Pricing and Hedging Positive Contingent Claims

Fair Price of Positive Contingent Claims.A European contingent clairh settled at
time T is anFr-measurable random variable. It can be thought of as a contract which pays
& at maturityT. The arbitrage-free pricing of a positive contingent claim is based on the
following principle: if we start with the price of the claim as initial endowment and invest
it in then + 1 assets, the value of the portfolio at tiiemust be just enough to guarantee
&. We follow the presentation of Karatzas and Shreve (1987).

DerINITION 1.3.  Leté > O be a positive contingent claim.

(1) A hedging strategyagainsté (resp. a superhedging strategy) is a feasible self-
financing strategyV, ) (resp.(V, =, C)) such thatvr = &.

We denote by (§) (respH’'(§)) the class of hedging strategies (resp. superhedg-
ing strategies) against If H(§) (resp.H’'(§)) is nonemptyg is calledhedgeable
(resp.superhedgeab)e

(2) Thefair price Xo (resp. upper pricep) at time 0 of the hedgeable (resp. super-
hedgeable) claing is the smallest initial endowment needed to heglgee.,

Xo=Inf{x > 0; 3(V,n) € H(§) such thatVy = x},

Xy = inf{x > 0; 3(V, n, C) € H'(§) such thatVp = x}.
These definitions hold foX; at any timet.

If Hypothesis 1.1 is satisfied, for any square-integrable nonnegative €laif(¢) is
nonempty, and the market is said to @@mplete’> Moreover, the fair price is the market
value of a hedging strategy #i(§) (Karatzas and Shreve 1987), as proved in the following
theorem.

3In the case of non-Brownian filtration, the market is incomplete; that is, there exists some contingent claim
& for which H (&) is empty. For such a contingent claim the fair price is not defined. However, thé &gtis
nonempty and the upper price is well defined (El Karoui and Quenez 1991,1995).
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THEOREM1.1. Assume H1.1. Let be a positive square-integrable contingent claim.
There exists a hedging strategX, =) againsts such that

(15) dXt = Xt dt+7Tt*O‘t9t dt—i—nt*ath\é, Xt =§&,

and such that the market value X is the fair price and the upper price of the claim.
Let(H¢; s > t) be the deflator started at time t; that is,

(1.6) dH! = —H[rsds+ 6 dW], Hf =1
Then
(1.7) X¢ = E[H1§|A], as.

Proof. Following Duffie and Epstein (1992a, 1992b), the process

t t l t
H; =exp—[/ rsds—i-/ 07 dWs + —/ |6s|*ds]
0 0 2 Jo

is said to be a deflator; it is also the solution of (1.6) started at time 0. $iacd6 are
bounded processes, it follows from Novikov's theorem (Karatzas and Shreve 1987, p. 198)
thatE(H2) < +ooandE(Hré&) < +oc for any square-integrable contingent claim. Define
the continuous adapted procesfrom

Hi Xt = E[Hr&| ] = M,

where M is the continuous version of the uniformly integrable nonnegative martingale

E[H{&|F]. From the martingale representation for the Brownian motion (Karatzas and

Shreve 1987, p. 185M can be represented as a stochastic integral; i.e., there exists a
predictable procesdJ;) such that

t T
He X, = E(HTS)—i—/ UZ dWs, / |Ug2dt < 400 a.s.
0 0

Putm = (o) H W + X 6]. ThenH X, = E(Hr§) + [o Hs(mZos — Xs62) dWk.
By Itd's lemma,(X, ) satisfies the linear BSDE (1.5). Thanks to the continuity of the
processe$i and X and to the boundedness@fwe can show thafoT loyme|2dt < 400
a.s. Sa X, ) is a hedging strategy agairistvith Xo = E(Ht&).

It remains to show thaXg (resp.X;) is the upper price (resp. the smallest superhedging
strategy). Let(V, ¢, C) be a superhedging strategy agaifistAgain using l6’s lemma
for the product of the RCLL semimartingaleand the continuous semimartingatieand
using (1.4), we have thaH; Vi ):<[o, 1] is a positive local supermartingale with decomposition
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dHV; = —H dC; + (UY)*dW, whereUY = H[—V; 6 + (o7)¢x]. Hence, by Fatou's
lemma,(H; Vi)te[o,1] is @ positive supermartingale and

(1.8) HiVt = E[HrVr|F] = Hi X, Vo= E(Hré) =Xo. DO

REMARK. MARTINGALE MEASURE. Recall that (1.7) corresponds to the well-known prop-
erty that the fair price of can be evaluated as the expectation of the discounted value of the
claim under the so-called risk-neutral probability measure or martingale measure (Harrison
and Pliska 1981); that is,

X, = Egle e "% | 7],

where Q is the risk-neutral probability measure with Radon-Nikodym derivative with re-
spect taP on F7, given by

dQ T 1 (7
d_Pzexp—[/o 0 dWg +§/0 |93|2d3]~

Notice thatQ is well defined as a probability measure since, by assumgtienhounded.
Moreover,Q is a martingale measure; that is, the discounted wealth process@slacal
martingales.

Arbitrage Opportunity and Uniqueness of the Hedging Strategi®ge have defined a
hedging strategy against a positive contingent ckaams a positive solutiotV, ) (V; > 0)
of the equation

(19) d\/t =1\t dt+7Tt*O't9tdt+7Tt*Ut dW, Vr =&.

Recall that, by definition, aarbitrage opportunityis a self-financing strategy, ) with
freelunch, that isVp = 0, V1 > 0, andP(Vy > 0) > 0. Notice that a hedging strategy
against > 0 and, more generally, any feasible (positive) self-financing strategy cannot be
an arbitrage opportunity sinceVfr > 0 andP(Vr > 0) > 0, thenVy > E(Ht V) > 0 by

(1.8). If the positivity assumption of\;, 0 <t < T) is relaxed, the self-financing strategy
can be an arbitrage opportunity. An example of such a strategy is given below.

EXAMPLE. By using one of Dudley’s results (Dudley 1977 or Karatzas and Shreve 1987,
p. 189), we can construct a predictable proggssich that

T T
/ YrdW =1, 0< / |12 dt < +o0 a.s.
0 0

Put HY; = fé YsdWs andey = (o7) [H1yr + Y1 6]. The strategyy, ¢) is a self-



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 9

financing strategy with initial endowment 0 and final valtlél. It is an arbitrage oppor-
tunity.

Using that arbitrage opportunity, we build an infinite number of self-financing strategies
(not positive) which hedgé at time T, that is, an infinite number of solutions of the
linear BSDE (1.9). From the pricing formula (1.7) we derive thit! is the fair price
at timet of the contingent claim-IT‘l with hedging portfolioH, 1(oy*)~16;. So the pair
(X%, 7% = (H=1-Y, H 1(6*)~10—9¢) is a self-financing strategy with initial endowment
1 and terminal value O (such a strategy is called a “suicide strategy” by Harrison and Pliska
1981). This pair satisfies the following BSDE:

dX? = X2dt + 76 dt + (7)) *or dW,  X$ =0.

Let (X, 7) be a solution of the LBSDE (1.9). Then for eacthe pair(X +AX°, 7 + A7)

is also a solution of (1.9). So there exists an infinite number of solutions of LBSDE (1.9).
Nonuniqueness for the LBSDE holds in general. Furthermore, notice that the value at O of
the strategy X + A X0, = 4 Ax%) is equal toXo + A. Hence, if such strategies are allowed

to hedge againgt, then the fair price fo€ cannot be defined.

Instead of introducing a positivity assumption on the present value of the self-financing
strategies, an alternative is to impose some integrability constraints on the strategies. In
Section 2, according to the results of Pardoux and Peng (1990), we prove that, under
assumption H1.1, (1.9) has a unique solut{df) =) such thatEfoT lojm|?dt < +oo.

If we consider only square-integrable, self-financing strategies, there exists no arbitrage
opportunity. Moreover, for a square-integrable contingent claim, there exists a unique
square-integrable hedging strategy.

For a complete study of the different formulations of arbitrage opportunities, see the
seminal papers of Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983), and
the papers of Delbaen and Schachermayer (1994a, 1994b). Important contributions to this
problem can be found in Stricker (1990), Back and Pliska (1987, 1991), Delbaen (1992),
Jacka (1994), and many others listed in the references.

1.3. Constrained Portfolios

Recently, in studying the pricing of contingent claims with constraints on the wealth or
portfolio processes, many authors have introduced some nonlinear backward equations for
the fair price of claims. We present a few examples.

EXAMPLE 1.1. HEDGING CLAIMS WITH HIGHER INTEREST RATE FOR BORROWING Bergman
(1991), Korn (1992), and Cvitanic and Karatzas (1993) consider the following problem:
the investor is allowed to borrow money at timat an interest rat& > ry, wherer; is
the bond rateR is assumed to be predictable and bounded). It is not reasonable to borrow
money and to invest money in the bond at the same time. Therefore, we restrict ourselves
to policies for which the amount borrowed at titis equal to(V; — Y ', 7{)~. Then the
strategy (wealth, portfolio}V, =) satisfies

n _
(110) d\/t =r 'V dt +7Tt*0't9t dt + ]Tt*o’t d\M — (R( —I) (Vt _ Zntl> dt.
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Given an inital investmeriy = x and a risky portfoliar, there exists a unique solution to

this forward stochastic differential equation with Lipschitz coefficients. The fair price (resp.
upper price) of a claim is still defined as the minimal endowment to finance a strategy which
guarantee§ at timeT. According to the results of Pardoux and Peng 1990 (Section 2),
there exists a unique square-integrable strategyr) which is a solution of the nonlinear
backward stochastic differential equation, where the nonlinear term depends on both wealth
and portfolio:

(111) dXi = r Xt dt+]Tt*O't9t dt

—(Re = ro) (X — Z?Tti)f dt + 7 oy AW, X1 = &,
i-1

with EfOT |mfor|2dt < +o00. FurthemoreX; is the fair price and the upper price gfat
timet.

Similar equations appear in continuous trading with short-sales constraints with different
risk premia for long and short positions (Jouini and Kallal 1995a, 1995b; He and Pearson
1991). Letd! — 62 be the difference in excess return between long and short positions in
the stocks. Then the present vaMef the portfolio strategyr must satisfy

(1.12) dVi =1 Ve dt + mfodt dt + [77] [0 — 621 dt + o AW

Let us suppose that: andd? are bounded, predictable processes. Given an initial endow-
mentx and a portfolio strategy there exists a unique solution to this forward equation.
Conversely, from the results stated in Section 2, we have that, given a square-integrable
contingent claim, there exists a unique square-integrable sol(Xiosn*x) of the BSDE

dX; = ry Xe dt + 7706} dt + 771" oe[6F — 62]dt + 7)oy AW, Xt =&.

Here X; is the fair price and the upper price of the clagnat timet. In Section 3.3 we
develop a general pricing theory for contingent claims with respect to convex constrained
portfolios.

EXAMPLE 1.2. HEDGING CLAIMS IN INCOMPLETE MARKETS In this section we suppose
that only some securities can be traded, and the hedging portfolios can be built by using
only these primary securities. In this case the market is incomplete; that is, it is not
always possible to replicate a payoff by a controlled portfolio of the basic securities. The
assumption that the set of superhedging strategies is nonempty is much milder. Under this
assumption, El Karoui and Quenez (1991,1995) showed that there exists an upper price
process Xi)ie[o,1] for a contingent claing and gave a characterization. This process does
not correspond exactly to the solution of a BSDE, butit can be obtained as the increasing limit
of a sequence of process(eé)te[o,n associated with the solutions of nonlinear BSDES. In
that paper a general filtration was considered, but here, for expository simplicity, we restrict
our presentation to a Brownian filtration.

More precisely, in this market only some securities, the firsines ( < n), can be
traded, and the hedging portfolios can be built by using only these primary securities. The
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==, 1=K=

the volatility matrix of the others is denoted by. Hence the volatility matrix- of the set
of market securities can be decomposed at tiag

Notice that the matrixo!)* has full rank because the global mat¢ix)* has full rank, so
the matrixo! (o1)* is invertible. The amount of a general portfotipinvested at timé in
the primary securities is denoted hy; and the amount in the others is denoted’hyso
that

nroy = (m) ol + Cm) ol
So an admissible hedging portfolio is to be constrainetPtg) = 0. Hence it satisfies
nior = (fm)*ol, and the admissible wealth is modeled by

dVt = reVedt + Cr)*o(dW + 6, dt).

This equation is unchangedéfis replaced by the “minimal risk premiun#® defined at
timet as the orthogonal projection 6f onto the range ofo,})* sinced; — 6 belongs to

the kernel ofs,l. Notice that classical results from linear algebra allow us to give a closed
formula forg*, namely

(1.13) ot = (o [(oH (@H*] o6

In what follows we suppose the processto be bounded.
Given a square-integrable contingent cldinthere does not necessarily exist a hedging
portfolio built on the primary securities to finangeIn others words, the BSDE

dXe = reXedt+ (Cr) ol [dW + 67 dt],  Xr =,
can have no solution. Consequently, it is interesting to study the upper pricgjiicen by
Xo = inf{x;3(V,n,C) € H}(§); Vo = X},

whereH (¢) is the set of the superstrategies which only depend on the primary securities;
that is,

1(E) = ((V, 7, C); Vr = £,dVk = rVe dt + () "o {d W + 6L dt] — dC; V> 0).

Suppose thai{; (§) is nonempty. Then the upper price is well defined and is achieved by
a superhedging strategy. This property can be proved by a duality argument.
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Let K be the subspace of bounded and predictable processes which take values in the
kernel ofo?; that is,

K'={B; off =0, as.te[0,T]; 3B >0, B < B}.

We strongly penalize the presence of as6ptsl, . . ., n) inthe general replicating strategies
by introducing a risk premiurg € K. The corresponding-hedging strategyV?, =#)
is the solution of the BSDE

dVif =r VP dt+ () o [dW + 6L dt + B dt],  Vp =&

In the terminology of Karatzas et al. (1989),#, =#) is the fair price forg in a fictitious
market, which completes the initial market.
Define X as the right-continuous, left-limited (RCLL) process which satisfies

(1.14) X; =esssupv’; B e K}, P as.

El Karoui and Quenez (1995) showed that the proeeissthe upper price and that is the
market value of an admissible superhedging strategy; i.e., there exist a portfolio grocess
and a consumption proce8€ssuch that

(1.15) dX = r X dt + () *ol[dW + 61 dt] — dC, X1 = &.
The proces¥X can be approximated by the continuous proces$Esdatisfying, fork € N,
(1.16) XK =esssupv’; |B| <k.BeKY, Pas.

We prove (see Section 3) that, since

dVf = r VW dt+ @y opodt + )y aldW +62dt],  Vf =¢,
dX¢ = rexK— Ksup k[(—ntk)*atﬂ]dt+(ntk)*at[dV\é +0tdt], XK =g,
BeKl;|Bl<

Because syR:, gk (—7i'01B) = K|| Proj(oy"mt)||, where Prgj denotes the orthogonal
projection onto the kernel af’,

dX} = reX¢ — K| Proj (o7 )l dt + () o [dW + 67 dt], Xk =&,

The strategieg XX, 7¥) can also be considered as penalized strategies. The penalizing
process given bk fé || Proj(c275)|| ds has an intensity proportional to the length of the
nonadmissible part afr2X). The larger this length, the more the local “variance” of the
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nonadmissible part qu(ng)*os dW; is large and the more the penalty is expensive. Notice
that the penalizing process only depends on,Rigf)*(?m)) = Proj ((ot)* (7).

By Pardoux and Peng’s results on nonlinear BSDEs that we recall in Section 2, these
equations admit a unique square-integrable solut}n 7*). By the comparison theorem
for BSDES, we can show that the sequence of the procegsissincreasing, and by using
their interpretation as a value function of a control problem, it follows that their limit is
equal toX.

Notice that these solutions are obtained as the value functions of a control problem
associated with the fair prices for the claim in fictitious markets. We shall see in Section 3
that this property is very general and results from the convexity of the functiojp(froj

Cvitanic and Karatzas (1993) studied this methodology for very general constraints on
the portfolio in a Brownian market and obtained similar approximations for the upper price
of contingent claimt¢. Bardhan (1993) also studied some problems in this area. More
recently, Kramkov (1994) anddHiner and Kabanov (1995) extended this methodology to
a general arbitrage-free asset pricing setting in incomplete markets without restrictions on
the filtration.

EXAMPLE 1.3. FOLLMER-SCHWEIZER HHEDGING STRATEGY IN INCOMPLETE MARKETS
The model and the notation are the same as in Example 1.Z heta square-integrable
contingent claim. In this context a strategy,' , ¢), is called anonadjusted hedging
strategyagainst when

(1.17) dVi =rVedt + () ol [dW + 6. dt] + de ., Vr =&,

where the procesg is a RCLL semimartingale satisfyingh = 0. The proces$—¢:) is

called thetracking error. In particular, at the terminal time the tracking error measures the
spread between the contingent cl@irmnd the portfolio value, anglcorresponds to the cost
process introduced byoiiner and Schweizer (1990). Notice that a self-financing hedging
strategy corresponds to a tracking error equal to zero and that a superhedging strategy
corresponds to an increasing tracking errop i$ a martingale orthogonal t ol dW, it

will be called a Blimer-Schweizer hedging strategy. Again, we remark that this equation

is unchanged if is replaced by the “minimal risk premiun@’. More precisely,

DEFINITION 1.5. A strategy(X,* 7, M) is called aFolimer-Schweizer hedging strategy
(or FS-strategy) it is aj-dimensional predictable process such]ﬂrgfsT |(od)* (1) |2dt)
< 400 and if M is a square-integrable martingale orthogonandteS1 dW; such that

dX =rXedt+ (r) o [dW + 6 dt] +d M, Xp =&,

REMARK. Such strategies were first introduced bgllfier and Sondermann (1986).
Initially, the problem is to find a strategy with minimal variance for the tracking error,
but it is rather complicated. In the case= 0 andé = O (that is,P is a martingale
measure) considered byliner and Sondermann, it is easy to see that the tracking error
of the minimal variance strategy is a martingale (such a strategy is said to be mean-self-
financing); actually, the minimal variance tracking error is characterized to be a martingale
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process orthogonal tﬁ; ol dWs. If 6 # O the situation is more subtle. Schweizer (1991)
introduced a criterion of local risk minimization and showed that a nonadjusted hedging
strategy is locally risk minimizing if the associated tracking error is a martingale orthogonal
to [g oldWs. New developments in this area include Ansel and Stricker (1992a,1992b),
Schweizer (1992, 19944, 1994b), Delbaen et al. (1994), and Monat and Stricker (1995).
Recall that in their paperdiimer and Schweizer (1990) characterized the FS-strategy in
a different framework: there exists only one primary risky security, and the price process of
this unique basic security is supposed to be any continuous square-integrable semimartin-
gale. Actually, the arbitrage-free hypothesis implies that it can be wilitfein fé asd(N)g
for some continuous square-integrable martindalegith quadratic variatioN) and some
predictable process.
Indeed, the FS-strategy is simply given by the solution of a linear BSDE.

PrOPOSITIONL.1. Let (X, ) be the hedging strategy againstin a market with the
“minimal risk premium” 6%; that is,

(1.18) dX = reXe dt + Yot dt + Yoy AW, X1 =E&.

Putq = oy'yt. Letqt (resp. ¢f) be the orthogonal projection of gnto the range ofol)*
(resp. the kernel of}). Let!n; be the vector process such that')* (*z;) = g, given in
closed form by, = [ot(6)*] Lo Put M = [3(g2)*dWs. Then(X,'z, M) is the
unique FS-strategy associated wiéth In other words, the FS-strategy corresponds to the
hedging strategy in a fictitious market with no penalizing risk premigra:(0).

Proof. Let (X, ) be the square-integrable hedging strategy agéainsta market with
the risk premium vecta??!, and putg; = oy* . Project the vectog; orthogonally onto the
range of(o})*, so

G =0 +9>  whereqg' € Rangé(ol)*) andg? € Ker(a).

Letr be the vector process satisfyigy = (o})*(17t) (notice thatz; is unique since the
matrix (o})* is full rank). We haveg; 6! = (qtl)*el @h*6 . PutM, = fot(qf)*dvvs.
M is a martingale orthogonal tf od dWs, and(X, 1z, M) is an FS- strategy.

Conversely, letX, (17), M) be an FS- strategy L&F be such thaM;, = fo @>* dWs
and putG = (o)*(}m) + G2, andyy = (o)1 Then(X, ¥) is a solution of BSDE
(1.18), and it follows from the uniqueness of the solutlon of a BSDE that the FS-strategy is
unique. O

REMARK 1.1. Suppose that the matii® (0)* is the null matrix; that is, the nonprimary
securities do not introduce supplementary risk on the admissible portfolios. Then the FS-
strategy consists of holding the amodnt = [0} (o})*] Lol (od)*(*y ) = () in the
primary securities. Moreover, by uniqueness the FS- strategy does not depend on the matrix
o?. Consequently, the simplest way to compute the FS-strategy is to complete the “primary”
market by introducing other securities whose volatility matrix satisffes?)* = 0, a.s.
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REMARK 1.2. LetQ! be the martingale measure associated Wih Using the same
arguments as in the proof of Theorem 1.1, it follows directly from Proposition 1.1 that
Xt is the conditional expectation of the discounted contingent claim computed under the
martingale measur@?.

Let us show tha@? is the minimal martingale measure (El Karoui and Quenez 1995,
Proposition 1.8.2) first introduced byHner and Schweizer (1990) as a martingale mea-
sure such that any bound®emartingale orthogonal to the marting('gf[)'eas1 dW; remains a
bounded)!-martingale. Indeed, using the same arguments as in the proof of Theorem 1.1,
we derive that a bounded, continuous procésshich is also &*-local martingale corre-
sponds to the square-integrable solutiof /) of BSDE (118) withr = 0 andé = Xy.

Now suppose thaX’ is alP-martingale orthogonal to the marting:j[posl dW;. ThenX'is
the stochastic integral of a procegsn the kernel ob1. So(qg))*6t = 0and(X’, (¢*)~1q")
is a solution of the BSDE (18) withr_ = 0, soX’ is aQ*-local martingale.

1.4. Recursive Utility

Inthe continuous-time, deterministic case, recursive utilities were first (to our knowledge)
introduced by Epstein and Zin (1989). Let us consider a small agent who can consume
between time 0 and time. Letc; be the (positive) consumption rate at tima\e assume
that there exists a terminal rewaydat timeT. The utility at timet is a function of the
instantaneous consumption rageand of the future utility (corresponding to the future
consumption). In fact, the recursive utilityis assumed to satisfy the following differential
equation:

(1.19) —dY, = f(a,Yodt, Yr=Y.

The functionf is calledthe generatar Thus, at time 0 the utility of the consumption path
(¢, 0<t<T)is

;
Y0=Y+/ f(Cs, Ys) ds.
0

Under uncertainty, Duffie and Epstein (1992a, 1992b) (see also Duffie, Geoffard, and
Skiadias 1992) introduced the following class of recursive utilities:

(1200  —dYi=[fc. Y0 — AYDiz*Z]dt — Z;dW,  Yr =Y,

where A is the “variance multiplier.” We can give another representation of the utility at
timet of the future consumptiofcs; t <s<T):

.
Y, = E[Y+/ [f(Cs, Ys) — A(Ye)SZ2 Zs]ds|}'t].
t

Because of their economic motivations, we provide the following examples of recursive
utilities, following Duffie and Epstein (1992a).
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Examples.
o Standard additive utility The generator of the standard utility is

f(c,y) =u(c) — By,

The recursive utility is

T
Y, =E [Ye‘ﬂ”—” +/ u(cs) e‘ﬁ(s‘“dsu—}]
t

e Uzawa utility The generator has the same form as additive utility, but the discounting
rate 8 depends on the consumption rate

f(c,y) =u(c) — B(0)y.
o Kreps-Porteus utilityLet 0 p < 1 and 0< 8. The generator is defined by

B -y
f(C,y)—; yp_l .

In general, utilities must satisfy the following classical properties:

Monotonicity with respect to the terminal value and to the consumption.
Concavity with respect to the consumption.

Time consistency: this means that, for any two consumption procesaesic? and
any timet, if ¢! andc? are identical up to time and if the continuation ot® is
preferred to the continuation of at timet, thenc! is preferred tac? at time 0.

Duffie and Epstein (1992a) showed thafifs Lipschitz with respect tg, then
—dY; = f(t, ¢, Yo dt — Z7dW, YT =Y,

has a unigue solution. Also, they state thaffifis concave with respect te, y) and
increasing with respect i the above properties are satisffed.

We will consider a more general class of recursive utilities, defined as associated with
the solution of a general BSDE

(121) - dYt = f(t7 Ct7Yt’ Zt)dt - Zt*dV\‘{ ’ YT = Yv

with concave generatdr. The existence and uniqueness of solutions of (1.21) are proved in
Section 2. Also, the above properties are obtained as direct consequences of a comparison

“More recently, Duffie and Singleton (1994) and Duffie and Huang (1994) have used this type of BSDE to
solve some pricing problems.
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theorem. The main result stated in Section 3 is the interpretation of recursive utility as the
value function of a control problem.

2. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

A linear backward stochastic differential equation was introduced by Bismut (1973) as
the equation for the conjugate variable (or adjoint process) in the stochastic version of the
Pontryagin maximum principle. Other works on the maximum principle were also done
using linear BSDEs by Arkin and Saksonov (1979), Kabanov (1978), and Cadenillas and
Karatzas (1995). Bismut (1978) introduced a nonlinear BSDE (a Riccati equation) for
which he showed existence and uniqueness. Pardoux and Peng (1990) were the first to
consider general BSDEs.

Several papers extended their results, particularly Antonelli (1993), Ma, Protter, and
Yong (1994), Buckdahn (1993), Buckdahn and Pardoux (1994), and, of course, Pardoux
and Peng (1990,1992,1993) and Peng (1990, 1991, 1992a, 1992b, 1992c, 1993).

In this section we present some important results for BSDEs. First we state some a priori
estimates of the spread between the solutions of two BSDESs, from which we derive the
results of existence and uniqueness. Then we give different properties concerning BSDEs.
In particular, we study one-dimensional linear BSDEs which are classical in finance, for
which we state a comparison theorem.

First we fix some notation. For e RY, |x| denotes its Euclidian norm ar, y) denotes
the inner product. Am x d matrix will be considered as an elemagnt R"*%; note that

its Euclidean norm is also given byy| = /tracqy y*) and that(y, z) = traceyz).
Given a probability spacg2, F, IP) and arR"-valued Brownian motiolV, we consider

e {(F);t €0, T]}, thefiltration generated by the Brownian motihand augmented,
andP theo-field of predictable sets a2 x [0, T].

e L2(RY), the space of alFr-measurable random variablés © — RY satisfying
IIX[12 = E(X[?) < 4o0.

o T2 (RY), the space of all predictable procesges2 x [0, T] > RY such that|g||? =
E [ lgn2dt < 4o0.

o H(RY), the space of all predictable procesges? x [0, T] — RY such that

E,/fOT lgt|2dt < +oo.

o Forp > 0andp € H7 (RY), [|¢|5 denotest fOT e’'|py|? dt. HZ 4,(R?) denotes the
spaceH? (RY) endowed with the norrj - g

For notational simplicity we sometimes us&(RY) = L3¢ H2 (RY) = H2 HL(RY) =
HyY, andH2 ,(RY) = HZS.

2.1. Existence and Uniqueness of Backward Stochastic Differential Equations
The Main Result. Consider the BSDE

(2.1) —dY = f(t, Y, Z0dt — ZFdW, Yy =&,
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or, equivalently,

T T
(2.2) Yt - %‘ + / f(S, Ys, Zs) dS - / Z;dWS,
t t

where

e The terminal value is affr-measurable random variabke; Q — RY.
e Thegeneratof mapsQ xRt x R4 x R4 ontoR? and isP ® BY® B"<4-measurable.

A solutionis a pair(Y, Z) such thafY;; t € [0, T]} is a continuouR9-valued adapted
process anfiZ;; t € [0, T]} is anR"*9-valued predictable process satisfy%{; |Zs|?ds <
+o0, Pa.s.

Suppose that € 1.2 (RY), f(-,0,0) € H2(RY), and f is uniformly Lipschitz; i.e., there
existsC > 0 such thatP ® dt a.s.

[f(w,t,y1,21) — T, t,¥2,22)| <C(Iy1 — Yol + 121 — 22])  V(Y1, Z1), Y(Yo, Z0).

Then(f, &) are said to betandardparameters for the BSDE.

THEOREM 2.1 (Pardoux-Peng 1990). Given standard parametersf, &), there exists a
unique pair(Y, Z) € H2 (RY) x H2 (R"™9) which solves (2.1).

We often refer to such a solution as a square-integrable solution. A proof can be found
in Pardoux and Peng (1990). We give here a shorter direct proof using useful a priori
estimates.

A Priori Estimates.

ProPOSITION2.1. Let ((f', £'); i=1,2) be two standard parameters of the BSDE and
((Y', Z'); i=1,2) be two square-integrable solutions. Let C be a Lipschitz constant¥or f
and putsY; = Y! —YZands, fy = fi(t, Y2, Z2) — f2(t, Y2, Z?). Forany(x, i, B) such
thatyu > 0, A2 > C, and8 > C(2 + 1?) + u?, it follows that

IA

1
(2.3) Y3 < T [eﬁTE(wYﬂZ) + —2||82f||§} ,
"

)\'2
2
(2.4) B2IE < 5o

1
[eﬂTE(wYTF) + 182 f ||,%} :
"

Proof. Let(Y, Z) € H2(RY) x H2 (R"*9) be a solution of (2.1). Using (2.2), we derive

that
T
/ 72 dWe
t

T
Vil < I€] +/ If(s,Ys, Z)lds + sup
0
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It follows from Burkholder—Davis—Gundy inequalities (Karatzas and Shreve 1987, Theo-
rem 3.28) that

;
E [sup|/ Z;‘dWS|2]
t t

IA

T t
2E[|/ Z;dWS|2}+2E[sup|/ z;dvvﬂ
0 t 0

1
4E[/ |ZS|2ds]
0

Now since( f, £) are standard parametets| + [ |f (s, Ys, Zs)| ds belongs td 2" and
sup_t |Ys| € L34

Now consider(Y?, Z%) and (Y2, Z?), the two solutions associated withi{, £%) and
(2, £2), respectively. From&t’s formula applied frons = ttos = T tothe semimartingale
e%3|5Y,|3, it follows that

A

T T
e"“|8Yt|2+f3/ eﬂ5|3Ys|2ds+/ e#%15Z5|%ds
t t
T
=efT18Yr > + 2/ e75(8Ys, (s, Y, Zh) — £2(s, Y2, Z2)) ds
t

.

— 2/ e’5(8Ys, 822 dW).

t

Since sup.1|8Ys| belongs tdL%l, e%5§Zs 5Ys belongs thI#‘“ and the stochastic integral
ftT e75(8Ys, 82 dWs) is P-integrable, with zero expectation. Moreover,

1£1(s, Y2, 21 — (s, Y2, Z2)| + |82 fs|

|T1(s, Y, 2h) — 25, Y2, 22| <
< C[I8Ys| + 18Zs[] + 182 15| .

The inequality (Cz+t) < CZ2/A? +t2/u? 4+ y?(u? + CA%) (A, u > 0) implies

T T
(2.5) E[eﬁt|8Yt|2]+ﬁIE[/ eﬂS|5YS|2ds+/ eﬂ5|823|2ds}
t t

.
< E[e’T5Y7)?] +E/ e’[CI8Ys|2(2 4+ 1)
t

18Z5> 182151

A2 + MZ

+C +u?|8Ys’ ds
;
<E[e’T18Yr’] + [C2+2%) + MZ]IE/ e”15Ys[>ds
t

c_ (T 1_ (T
+ —]E/ e#15Z)>ds+ —E/ €915, fs|? ds.
P w2y
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Choosings > C(2 + A?) + u? andC < A?, these inequalities give
T 1
E[e®|8Y,[2] < E[e’T|5Yr[2] + E f &5, T2 ds.
t 124

We obtain the control of the norm of the procé¥sby integration. Then the control of the
norm of the proces&Z follows by inequality (2.5). O

REMARKS. (@) In the control of the norm @Y, we can replacé& by inf(T,[8 — (C(2+
2 2y1-1
A% + pH)] ™.
(b) By classical results on the norms of semimartingales, we prove similarly that

.
E[sup|sY;|’] < KE [|8YT|2+/ 182 ft|2dt} ,
t<T 0

whereK is a positive constant only depending ®n

Proof of Theorem 2.1We use a fixed-point theorem for the mapping frﬁﬁ]ﬁ(Rd) X
HZ ,(R™9) into H ,(RY) x HZ ,(R"™), which maps(y, z) onto the solution(Y, Z) of
the BSDE with generatof (t, y;, z); i.e.,

T T
Yt=§'+f f(s,ys,zs)ds—/ Z:dWs.
t t

Let us remark that the assumption th@t, &) are standard parameters implies that
(f(t, v, z); t € [0, T]) belongs tdH2 (RY). The solution(Y, Z) is defined by considering

the continuous versiol of the square-integrable martingﬂl{afoT f (s, V¥s, Zs) ds+&|F].

By the martingale representation theorem for the Brownian motion (Karatzas and Shreve
1987, Theorem 4.15) there exists a unique integrable proZess H%“Xd such that

M; = Mg + fé Z:dW;. Define the adapted and continuous procédsy Y; = M; —

5 f(s, ys, z5) ds. Notice thatY is also given by

T
Yt=E|:/ f(37y5125)d3+§|]:ti|~
t

The square integrability of follows from the above assumptions.
Let (y*, 2%), (y2. %) be two elements afiz, x HZ'*, and let(Y?, Z1) and(Y2, Z2)
be the associated solutions. By Proposition 2.1 applied@ith 0 andg = 12, we obtain

T T
18115 < EIE/O eS| (s, yi, zb) — f(s y2, 2)|%ds
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and
T
522<£E eﬁSf 11_]( 222d
1162115 = i IT(s,¥s,Z5) — (s, ¥5, Z5)|"ds.
0

Now sincef is Lipschitz with constan€, we have

20+ T

)C
(2.6) 18Y113 + 1152113 < [18y112 + 1152]12].

Choosings > 2(1+ T)C, we see that this mappinB is a contraction fronfilz, x Hz,*

onto itself and that there exists a fixed poinhich is the unique continuous solution of
the BSDE. O

From the proof of Proposition 2.1 (and more precisely from estimate (2.6)), we derive
that the Picard iterative sequence converges almost surely to the solution of the BSDE.

COROLLARY 2.1. Let 8 be such tha2(1 + T)C < B. Let(YX, Z*) be the sequence
defined recursively bg¥y = 0, Zo, = 0) and

(2.7) —dY = f(t, YK, Z9 dt — (ZFH*dw, YE =g,

Then the sequencér®, Z¥) converges to(Y, Z), dP ® dt a.s. (and inH%ﬂ(Rd) x
HZ ,(R"™%)) as k goes teroo.

Proof. Let (YK, Z¥) be the sequence defined recursively by (2.7). Then by (2.6),
IV — YK))2 112 — Z¥)13 < €¥K,

whereK = [|Y! = YO||Z 4 [|Z* — ZO||3 ande = 2(1+ T)C/B < 1. Hence

Z||Yk+1_Yk||/23+Z||Zk+l_Zk||§ <+OO,
k K
and the result follows. O

REMARK. Again forY itis possible to consider the nomirsup.cp 1 |YSk —Ys| ||2 instead
of [[Y]|s; consequently we also have that gypr; IYX — Y| converge® a.s. to 0.

5L et (Y, Z) be arepresentation of the fixed point of the mappirig the clasd? , (RY) x Hz , (Rnxd) and
choose the continuous versigmefined byy; = E[flT f(s,Ys, Zs) ds+E|R] = I[C[flT f(s, Ys, Zs) ds+£|R].
Hence(Y, Z) is a continuous solution of the BSDE.
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Linear BSDE. Theorem 2.1 applied to linear BSDESs specifies the integrability proper-
ties of the solution of the standard pricing problem (Theorem 1.1).

PROPOSITION2.2. Let (B, y) be a boundedK, R")-valued predictable procesg,an
element offl2 (R), andé an element of.2 (R). Then the LBSDE

(2.8) —dYt =[ex +Yi B+ Zin]ldt — Z7dW, Yr =§,

has a unique solutiorl, Z) in H%ﬂ(R) X H%Yﬁ(R”) and Y is given by the closed formula

.
(2.9) Y, = E[SFtT +f Féwsdsu-"t} Pas.,
t

wherel'} is the adjoint process defined forst by the forward LSDE
(2.10) dri = ri[gsdts+pysdwg, TIi=1

In particular, if & and ¢ are nonnegative, the process Y is nonnegative. If, in addition,
Yo = 0, then, foranyt, Y=0a.s,& =0a.s,andg; = 0dP® dt a.s

Proof. Sinces andy are bounded processes, the linear geneffatiory, z) = ¢+ Bt y+
yi*zis uniformly Lipschitz and the pairf, £) are standard parameters. By Theorem 2.1 there
exists a unique square-integrable soluiignz) of the linear BSDE associated wit, &).

By standard calculations similar to those of Section 1.2, it follows h#t + fé Ispsds

is a local martingale. Now syp; |Ys| and sug_t |T's| belong tolL3* and sup_t |Ys| x
sup_ ITs| belongs tdL+*. Therefore the local martingal@Y; + ; T'ss dsis uniformly
integrable and equal to the conditional expectation of its terminal value. In particuar, if
andy are nonnegativey; is also nonnegative. If, in additiody = 0, then the expectation of
the nonnegative variabl 1 + fOT Ispsdsisequalto 0. S§ = 0,Pa.s.,g = 0, dP® dt
a.s.,andr =0a.s. O

REMARK. Recall that in Section 1.2 we constructed various solutions for the LBSDE
which are not square integrable. Nevertheless, all solutions bounded below still satisfy
the positivity property. More precisely, I€X, IT) be a solution of (2.8) (not necessarily
square integrable) witX; > —B (B > 0) for any timet, whereB is a square-integrable
Fr-measurable variable, and suppose thahdy are nonnegative. Sing€dl; = T't X; +
fé [spsds;t € [0, T]) is a local martingale, bounded below by the integrable variable
—sup.7 (') B, Fatou's lemma implies tha¥l is a supermartingale which is minorized
by E[M1|F]. It follows that X; > 0. (Notice that the square integrability gfis not
needed for this property.) Furthermore, the square-integrable solution of({2.8) is
the smallest of the solutionsX, IT) which are bounded by below by a square-integrable
variable. Indeed, the differencé — Y is a bounded below by a square-integrable variable
solution of the LBSDE with terminal condition 0 agd= 0 a.s., soX — Y is nonnegative.

This property is a mild extension of Theorem 1.1, which will be generalized to the case of
nonlinear BSDES in Section 2.3.



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 23

2.2. Comparison Theorem

As an immediate consequence of Proposition 2.2, we provide (in the one-dimensional
case) a comparison theorem first obtained by Peng (1992a). Recall that such a property
can be obtained for forward SDEs only under strong assumptions on the coefficients; in
particular, the functions which appear in the coefficients of diffusion must be the same for
the two equations (Karatzas and Shreve 1987).

THEOREM 2.2 (Comparison Theorem). Let (1, &%) and (f2, £2) be two standard pa-
rameters of BSDEs, and lg¥?!, Z%) and (Y2, Z?) be the associated square-integrable
solutions. We suppose that

o t1>¢£2Pas
o Sfi=flt, Y2 Z2») — f2(t, Y2, 22 >0,dP®dt as.

Then we have that almost surely for any time, Y Y2.

Moreover the comparison is strict; that is, if, in additions ¥= Y2, then&! = &2,
flt, Y2, z2) = f2(t, Y2 Z?),dP®dtas., and ¥ = Y2a.s. More generally if ¥ = Y?
on a set Ae F, then ¥ = Y2 almost surely orft, T] x A, & = &2 a.s. on A, and
fl(s, Y¥2,22) = f2(s, Y2, Z3)on Ax [t, T]dP®ds a.s.

Before proving this theorem, we deduce a sufficient condition for the nonnegativity of
the BSDE solution.

COROLLARY 2.2. If& > 0a.s. and ft,0,0) > 0dP ® dt a.s.,thenY> 0P a.s. In
addition, if ¥ = Oon aset Ac F;,then¥ =0, f(5,0,0) =0on[t, T] x A, dP® ds
a.s., anc = 0 almost surely on A.

Proof of Theorem 2.5We use the notation of Proposition 2.1. The @él, §Z) is the
solution of the following LBSDE:

(2.11) —d8Y; = Ay )Y + A, FL1)*6Z + 85 frdt — 827 AW,
8Yr = &' - &2,

whereA, f(t) = (ft, YL, zH — 4, Y2, ZH)/ (Y —Y2) if Y2 —Y2Zis notequal to 0,
whereasA, f1(t) = 0, otherwise. AlsoA, f (1) = (f4(t, Y2, ZI=Y — fi(t, Y2 Z)/
(zY — z2Yyif zY — Z21 is not equal to 0, whereas, f 1 (t) = 0, otherwise. Her&'
is the vector whose firstcomponents are equal to thosezffand whosen — i others are
equal to those o %; thatis,Z! = (z2*, ..., z2", zH'*, ...z,

Now since by assumption the generatdiis uniformly Lipschitz with respect toy, z), it
follows thatAy f LandA, f1 are bounded processes. Algpf; andsYs are nonnegative.
It follows from Proposition 2.2 that the unique square-integrable solti¥ns Z) of the
LBSDE (2.11) is nonnegative and satisfies

]
(2.12) I, = E[(€* — €7 + / Ts2 fs dSIA].
t
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whererl is the adjoint (positive) process of the above LBSDE. Als,lif= Y2 on a set
Ac F, thentl = £25,fs = 0,dP®dson A x [t, T], and Yl = Y2 a.s. onA x [t, T].
Thus we obtain the last point of Theorem 2.2. O

REMARK. Relax the assumptions of square integrability for the solutions of the BSDE
in the comparison theorem and suppose only that there exists a square-integrable variable
B > Osuchtha¥!—Y2 > —B,t € [0, T]. From the remark which follows Proposition 2.2,
itis easy to prove that the inequal¥} > Y2 still holds and that the other properties of the
comparison theorem hold, too.

2.3. Supersolution

Earlier (Definition 1.2) we introduced the notion of a superhedging strategy, which can
be considered as a supersolution of a one-dimensional LBSDE, defined as follows.

DerFINITION 2.1.  Suppose thal = 1. A supersolutionof a BSDE associated with
standard paramete(s, &) is a vector procesgY, Z, C) satisfying

(2.13) —dy = ft, Y, Zodt — ZfdW +dGC; , Yr =§,

or, equivalently,

T T T
(2.14) Yt:$+/ f(s, Y, Zs)ds—/ z;dvvs+/ dGs,
t t t

where

e ¢ is anR-valued,Fr-measurable random variable.
(Y;,t € [0, T]) is a right-continuous, left-limited adapted real process. WYias
continuous, the solution is said to be continuous.
Z is a predictable process which takes valueRrwith fOT |Zs]?ds < +oo P a.s.
(Ci; t €0, T) is an increasing, adapted, right-continuous process sucghatO.
Y is bounded below; that is, there exists a square-integreplmeasurable variable
B > Osuchthat; > —-B,te[0,T], Pas.

REMARK a. Suppose thaf is a linear generator with bounded coefficiegtsy and
associated witly € H% (R). The adjoint process is denoted by Let (Y, Z,C) be a
supersolution associated with, £). ThenI\Y; + fé ['spsdsis a local supermartingale.
Notice that this property corresponds in finance to the fact that the discounted wealth
associated with a superhedging strategy is a risk-neutral supermartingale (in this-ease
0).

REMARK b. By the extension of the comparison theorem (Theorem 2.2), itis clear that if
(f, &) are standard parameters the continuous supersolutions dominate the classical square-
integrable solution of the BSDE. This property applied to European option pricing in the
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constrained case (Sections 1.3 and 3.3) shows that the upper price corresponds to the square
integrable strategy (that is, the first statement of Theorem 1.1 still holds).

REMARK c. Let(Y?!, Z1) and(Y?, Z?) be two square-integrable solutions of BSDEs with
standard parameters satisfying the assumptions of the comparison theorem 2.2. Then there
exists an increasing proce83 such that'Y?, Z2, C?) is a supersolution for the BSDE with
parametergfl, £1).

An important property is that the infimum of two continuous supersolutions is still a
supersolution. More precisely,

ProOPOSITION2.3. Let(Y?, Zt, Ct)and(Y?, Z?, C?) be two continuous supersolutions
of the BSDEs with parameters?, £1) and (2, £2). Then there existéZ*, C*) such
that (Y* = Y A Y2, Z*, C*) is a supersolution of the backward equation with terminal
conditions* = &' A §2 and generator f(t,y,2) = lyiy2 f1(t, Y, 2) + 1yova F2(1, Y, 2).

In particular, if f1 = 2, then(Y* = Y A Y2, Z*, C*) is a supersolution of the BSDE
with parameterg f*, £%).

Proof. Recall the Tanaka formula (Karatzas and Shreve 1987) for the minimum of two
continuous semimartingalé& andY?,

dYtl A Yt2 = 1Y‘1§Yt2 dYt1 + 1Y12<Yt1 dYtz —dL¢,

wherelL is a local time—that is, a continuous increasing process with support included in
{t €[0,T], Y = Y?). ThenY* = Y! A Y2 satisfies

—dY = Lyoe[fH(E Y Zh dt — ZEdW +dC]]

+ Loy [ F2t, Y2, 2D dt — ZZdW +dC7] +dL.

PutZ; = lyy2Zt 4+ 121 Z? anddC = 1yiy2dC! + 1y2_y1 dCZ + dL; . Then
(Y* = YL A Y2 Z*,C*) is a supersolution with parametef$*, £*) sinceY! A Y? is
bounded below. O

COROLLARY 2.3. Let (Y1, Z1, C') be a continuous positive supersolution of a BSDE
with parameters f *, £1). Then the increasing procesg.:_o dC/' is absolutely continuous

with respect to the positive measuré(t, 0, 0)~ dt.

Proof. The above calculation applied with®> = 0, £2 = 0, C? = 0, Y? = 0, and
Z? = Ovyields to

0= 1y o[ f(t, ¥}, ZHdt — Z{ dW +dC] +dL.

Hence ](tlzoztld\M = 0and l,tlzo[fl(t, 0,0)dt +dCl] +dL; = 0. It follows that on
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{yt =0}, fi(t,0,0) is negative and
dLt + 1y1-0dC! = 1yiof*(t, 0,00~ dt,

and so the result follows. |

2.4. Flow and BSDE Dependence upon Parameters

In this section we study the properties of continuity and differentiability of the solutions
of BSDEs depending on parameters and the flow properties of a BSDE. These results follow
essentially from the a priori estimates.

Continuity and Differentiability. Let (f(«, -), £(«, -), « € R) be a family of standard
parameters of a BSDE whose solutions are denote@yByZ*). For notational conve-
nience, we often writgY?, Z°) for (Y, Z%). Let us make the following hypotheses:

1. The family f (¢, -), « € R, is equi-Lipschitz; i.e., there exis6G > 0 such that,
dP®dta.s.,

Yo € R, |f(a7 w, t’ yl’ Zl) - f(av w, ts y21 22)| = C(|Yl - YZ| + |Zl - 22|)

2. The functionae +— (f(a,-),&(x)) is “continuous”; i.e., for eachuay,
fla.t, Y2, Z0) — £ t, Y2, Z0) converges to 0 i ,(R?) and& () — &(ao)
converges to 0 ifi.2 (RY) asa — ao.

3. f(,w,t,y, 2 andé(-, ) are equi-Lipschitz with respect ta

4. Vua € R, f(a,-) is differentiable with respect toy, z) with uniformly bounded
derivatives denoted b§, f («, y, z) andd, f («, y, z) which are uniformly contin-
uous; that isyYe > 03dn such thadP ® dt a.s.,

lh <n = VY@, Y,2),dyf(@ot,y+h 2 -0 f(eaoty2 <e

(and the same holds fég f (¢, y, 2)). Such assumptions hold if, for exampleis
twice differentiable with bounded second derivatives .

5. The functiona — (f(a, "), &(a, -)) is differentiable; i.e., for eachg the func-
tionsa > f(a,-, Y% Z% R — H%ﬂ(Rd) anda > £(a, -), R — L2(RY) are
differentiable atyo with derivatived, f (ao, -, Y°, Z°).

PrROPOSITION2.4. Let(f(qa, ), &(a, ), a € R) be a family of standard parameters of
a BSDE with solutions denoted By, Z%).

1. Suppose these parameters satisfy hypotheses 1 and 2. Then the funetion
(Y%, Z9, R — H%ﬂ(Rd) X H%ﬂ(R”Xd), is continuous. Moreover if hypothesis 3

holds® there exists a bicontinuous version(af t) — (Y%).

81t is sufficient to suppose that for amy y € R the spread between the corresponding solutidtg, (Y?)
satisfies the inequality
Efsupl Y — Y/ 1?] < ML+ [a)a — y|?
t<T

for a constaniM > 0.
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2. Suppose these parameters satisfy hypotheses 4 and 5. Then the fanetion
(Y%, Z%); R — Hf 4(RY) x HZ ,(R™), is differentiable with derivatives given
by (0,Y%, 0,Z%), the solution of the following BSDE:

(2.15)—d(@Y{) = [3y f (o, t, Y, Z)3a Y + (3, F (e, 1, Y7, Z), 9, Z¢)] dt
o T t, Y7, ZO dt — (3.Z7)" dW,
80(Y1q - 3(15&

wher€ (9, f, 3,Z%) = ({3, f', 3, Z%))1<i <d-

Proof® Property 1 is an immediate consequence of the a priori estimates. Let us prove
the second one. By hypothesis 3 and the a priori estimates (Proposition 2.1), it follows that
for a constanM > 0

E[sup|Y{ — Y] < Mla - y[?.
t<T
The existence of a bicontinuous version follows from Kolmogorov’s criteria (Karatzas and
Shreve 1987, p. 53; Revuz and Yor 1991, Chapter VI, Proposition 1.3).
Let us show that if hypotheses 4 and 5 hold, then for eack R the functionoe +—
Y%, Z9, R —~ H2 x HZ '};d is differentiable atxg. For notational convenience, we

can assume thato = 0 and that the dimensionsandd are equal to one. Put,Y; =
a LY = YD) andA, Zi = a7 1(Z¢ — ZP). Then

—dAY; = a (e, t, Y, Z8) — £(0,1, Y2, Z)] dt — A, Z; dW,
AYr = a (@) —§(0)].

Hence, as in the proof of Theorem 2.5, we treat this equation as a linear one:
—dALYy = V(o t, ALY, AgZH)dt — (AL, Z%)F dW,
whereys is defined by (o, t,y,2) = A,) Yy + B, (t) Z + ¢, (t) and where, for # 0,

f(avt’Y(xv Zta) - f(aathO’ Z?)

H o 0

(2.16) A%t = Yo — YtO if Yo # Y
dy fla,t, Y2, Z%) otherwise

(217) B*(t) = ze — ZtO t )
3, f(a,t, Y2, Z0) otherwise

"We use the notatiotd; f', 8, Z%) =Y ", 1114 0z | ZE,
8We thank Martin Schweizer for his remark concerning this proof.
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and
1
) = — (F(@,t, Y7, Z)) = 10,1, Y7, ZD).

Puty (0, t,y,2) = 3y f(0,t, Y2, ZD)y + 9,f(0, 1, Y2, Z9) z + 3, f (O, t, Y2, ZD).
By property 1 of this proposition(Y®, Z%) converges to(Y?, %) in H} ® H%3.
We now have to prove that\,Y, A,Z) converges tad, Y, 3,Z°), the solution of the

above BSDE, a& goes to 0. To use the same convergence argument, we must show that

Y(a, -, 3 Y°, 3, Z°) converges tas (0, -, 3, Y°, 8,2°) in H7, ® H% ; asx goes to 0. Notice

that A%(t) = fol Ay f (e, t, Y2 + 1Y — YD), Z#) di. Consequently,

.
E/ (A1) — dy f(a, t, Y2, Z8))2(3, YO)2 dt
0

T 1
< ]Ef / By (o, t, YO+ 1Y = YD), 2o
0 0

—ay f(a, 1, Y2, Z8))%(3, YO)? dadt.

Splitting this integral into two terms on the sdt¥® — Y2| < n} and{|Y¥ — Y?| > n}
and using that, by hypothesisd,f («, t, y, 2) is uniformly continuous and bounded (by a
constantk), it follows that for eackx > 0 there existg > 0 such that

.
(A(t) = By f (e, . YO, 208 YOI 15 < €719, YOII5 + KE /O Lye—yoj= 0o Y12 dt.

Now split the last term into two parts corresponding to the{§&tY?| < M} and its
complement. Then by applying the Markov inequalityfo— Y, we have

T 2 T
M
H«:fo Liive—yoy=ny |0 YO 12 dt < ?HY“ —Y°||§+ﬂ«:f0 5, v0> My 19 YOIZ dt.

By the Lebesgue theorem, singgr® is square integrablé, fOT 15, v01> w196 Y22 dt con-
verges to 0 a8l — oco. ChoosingM sufficiently large and using the convergenceyéfto
Y0 in HZ!, it follows easily that

lim [1(Au(t) = dy (t, . Y°, Z%)8u YOlI2 = O.

By the same method we easily see thatlirg||(dy f (@, -, YO, Z%) — 3y f (O, -, YO, Z9))
3. Y°||2 = 0. Hence, it follows thatlim_, o || (A (t) —dy f (O, -, YO, Z9))3,YO||, = 0. Sim-
ilar arguments give that lign, o || (B (t) — 8, (0, t, Y°, Z9))3,Z% |, = 0. Consequently,
using hypothesis 5, as goes to 03/ («, t, 3, Y°, 3, Z°) converges tay (0, -, 3,Y°, 3, Z°)
in H7Y, x Hy. By the first part of the proposition, the solution, Y, A, Z) converges to

(3.Y°, 8,2°) in HE Y x HE Y. O



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 29

REMARK. Notice that, as for the a priori estimates, one can take the Efgop 1 | 12]
instead of |Y|| for Y. Consequently, if the parameters are differentiable, then the function
a — Y« is differentiable for this norm.

Flow of a BSDE. Recall the dependence of the solutions of BSDE with respect to
terminal condition by the notatiofY (T, &), Z(T, &)). We provide a flow property and
some regularity results similar to the case of forward SDEs.

PROPOSITION2.5. Let (Y, Z) be the solution of a BSDE with standard parameters
(T, f,8).

e Forany stoppingtime & T,
Y(T,8) =Yi(S Ys(T,§)), Zu(T,&) =Zi(SYs(T,§)), tel0, §dP®dtas.

e Suppose that the sequence of stopping timeso8verges a.s. to S and that the
sequence of the terminal variablgs € Fs, converges ifl.2 (RY to & € Fs. Then
the pair of processe®Y (S, £n), Z(Sh, &) converges irH?r,ﬁ(IR{d) x H%ﬂ(R”Xd) to
(Y (S, §), Z(S §)).

Proof. By conventional notation we define the solution of the BSDE with terminal
condition(T, &) fort > T by (Yy =&, Z; = 0). Soif T’ > T, then(Y;, Z; ;t < T') is the
unique solution of the BSDE with standard paramet@rs f (t, y, 2) 1<), £).

Now let S < T be a stopping time, and denote ¥y S, £s) the solution of the BSDE
with standard paramete(s, f (t, y, 2)1;<g. £s). The processe¥: (S, Ys), Zi(S, Ys); t €
[0, T]) and(Yias(T, &), Zi(T, &)1i<g;t € [0, T]) are solutions of the BSDE with param-
eters(T, f(t,y, 2)1i<g, Ys). By uniqueness these processes are the sihm@ dt a.s.

The convergence property results immediately from Proposition 2.4, since the parameters
(T, T(t,y, 2)1ji<s,). &) satisfy hypotheses 1 and 2 of that proposition. O

3. CONCAVE BSDES AND CONTROL PROBLEMS

In this section we are concerned with the solution of a BSDE with respect to standard
parameters that are infima of standard parameters. This property can be translated to the
solutions under some mild conditions. In other words,

Yi(inf %, inf&%) = essinfY (f%, £%).

This property can be applied to some classical control problems. Under some mild condi-
tions, the value function can be characterized as the solution of a (concave) BSDE. From
this point of view, classical properties of the value function can be derived. Then we show
that, conversely, the solutiafY, Z) of a BSDE (withd = 1) with concave generator can

be considered as the value function of a control problem.

3.1. BSDE and Optimization

Solution of BSDE as Minimum or MinimaxIn this section we are concerned with
standard generatoifs(respectively terminal conditiorf§ which can be obtained as infima
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of standard generators* (respectively of terminal conditiors*). From the comparison
theorem the solution of the BSDE associated withé) is less than the infimum of the
solutions associated withf*, £*). The problem is to know when the equality holds.

ProPOSITION3.1. Let(f, &) and(f¥, &%) be a family of standard parameters, and let
(Y, Z) and (Y%, Z*) be the solution of associated BSDEs. Suppose that there exists a
parametefx such that

(3.1) f(t, Y, Zy) = essinff(t, Y, Z) = £, Y, Z,) dP®dtas.,

£ = essinf® = £% Pas.

Then thé processes Y and*Ysatisfy

(3.2) Y; = essinfy? = Y®, Vte[0,T], Pas.
o

Proof. (Y, Z) and(Y%, Z%) are solutions of two BDSEs whose generators and terminal
conditions satisfy the assumptions of the comparison theorem (2.5). Hence, far any
Y < Y& and, consequently; < essinfy® for any timet P a.s.

We now prove the equality using the uniqueness theorem for BSDEs and the existence
of a parametef such thatf (t, Y, Z;) = f%(t, Y, Z;) andé = £ a.s. Hence(Y, Z) and
(Y¥, Z%) are both solutions of the same BSDE with parametéfs £%); therefore, they
are the same. So,

essinfy > Y, = Y > essinfy® Vte[0,T], Pas. O

CoROLLARY 3.1. The same result holds if the generators only satisfy the following:

e The generators f are equi-Lipschitz with the same constant C.
e For eache > 0, there exists a contrat® such that

(3.3) f(t,Y;, Zy) = essinff(t, Y, Zy) > f¥(t,Y;, Zy) —e, dP®dtas.,
£ = essinfE® > £¥ —¢, Pas.

Proof. We suppose that the generators satisfy (3.3). sRut= Y; — Y& and§z; =
Z, — Z¥. Using the same arguments as in the proof of the comparison theorem, we derive

9Dellacherie (1977) introduced the notion of ess inf of processes in the following manner:
e aprocesd is said to minorize the process” if {w; 3t € [0, T]U¢(w) > Uf(w)} is alP-null set.

e aprocesd is said to be ess ifd ¢ if, for any o, U minorizesU®, and if a proces¥ which minorizedJ*
for eacha minorizesU. Moreover, for right-continuous left-limited proces$#$, ess infu* exists and
there exists a denumberable family,) such thaty = infU®n.



BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN FINANCE 31

that(8Y, 8 Z) is the solution of the following LBSDE :

(3.9 —dsY; = Ay FO8Y: + (AL f (1), 8Z;) + 8 dt — 8ZF AW,
8Yr = £ — &~

whereAy f (t) and A, f (t) are predictable processes bounded by the Lipschitz corStant
of f and

8t = f(t, Vi, Zo) — £t Y, Zo).
It follows that

T
(35) Yy =E |:/ Ft,S(SfS‘E ds+ F’[,TSYT|-7:’[j| s
t

whererl; _is the adjoint process (positive) of the above LBSDE; that is,
(3.6) dl's = Is[Ay f(s)ds+ A, T ()" dW], n=1.

By (3.3) we have

;
8Yy > —¢E [/ Iy sds+ Fmﬁ] > —e(T + 1)e°T,
t

whereC is the Lipschitz constant for th&*’s and the result follows. O

Similar results were extended to minimax problems in Hamadene and Lepeltier (1994) in
connection with stochastic differential games. These techniques are also useful for solving
optimization problems associated with recursive utilities (Quenez 1993; El Karoui, Peng,
and Quenez 1994).

COROLLARY 3.2. Let(f, &) and(f*#, £%#) be a family of standard parameters, and
let (Y, Z) and (Y*#, Z*#) be the associated solutions. Suppose that f ahd (fesp.£

and&*?) are linked by a minimax relation and that there exists a pair of param&terg)
such that the following formulation of the Isaac condition holds:

(3.7) (Y, Z) = essinsupf*f(t, Vs, Z) = 12P(t, Y, Z), dP @ dtas.,
® B

£ = essinfupe®? = £%f Pas.
o
B

Then the solutionsYand \{"ﬁ are also linked by a minimax relation with saddle point
(o, B); that is, the Isaac condition is satisfied:

(3.8) Y; = essinfupY®? = Y*# — esssunf Y** vt € [0, T], Pa.s.



32 N. EL KAROUI, S. PENG AND M. C. QUENEZ

Proof. Use the fact that, 8) is a saddle point; i.e.,

esssupF P (Y, Zo) = Tt Y, Z0) = T%P(t, Yy, Z4) > essinff@B(t, Y, Zo) .
}3 o

The same inequalities hold for the terminal conditions. As a consequence of the previous
proposition, the same inequalities hold for the solutions:

esssupy”? > Yy = VP > essinty? vt €[0,T], Pas.
ﬁ o

These inequalities imply that the Isaac condition is satisfied for these processes. O

Stochastic Control Problems.A number of stochastic control problems (Krylov 1980;
El Karoui 1981; Elliott 1982; Davis 1973; El Karoui and Jeanblanc-Rectj888) are
specified in the following manner: the laws of the controlled process belong to a family of
equivalent measures whose densities are

(3.9) dHY = HU[d(t, u) dt + n(t, u)*dW],  HY =1,

whered(t, u) andn(t, u) are predictable processes uniformly boundedspgnd v; re-
spectively. A feasible contrdly,t € [0, T]) is a predictable process valued in a (Polish)
spaceJ. The set of feasible controls is denoted/by The problem is to minimize over all
feasible control processeghe objective function

;
(3.10) Ju) =E U HY K(t, up) dt + H}’K(uT)} ,
0

whereK (-, ur) is the terminal condition anki(-, t, u;) is the running cost associated with
the control process. The processe&(w, t, u),t € [0, T])) (respectively the terminal
conditionsK (w, u)) are assumed to be measurable with respeBt@B(U) (respectively
Fr ® B(U)), whereB(U) is the Borelianr-algebra orlJ ; furthermore, they are assumed
to be uniformly bounded by a square-integrable prockss € [0, T]) (respectively by a
square-integrable variabjg). We also suppose thatv, k, andy are bounded.

The controller acts on the law of processes by change of equivalent probability measures
with Radon-Nikodym derivatives given by

and by a controlled discount factor with bounded id(¢g u); that is,

dDy = D¢ d(s, us) ds, with H = D{'L{'.
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Let us denote by the probability measure with densityy on Fr. Then the objective
function can be written

;
(3.11) J(U) = Equ U DY k(t, up) dt + D#K(uT)] .
0

Notice that, by Proposition 2.2(u) = Y{', where(Y", Z) is the solution of the linear
BSDE associated with standard parametdrs £), where

fUt,y, 2) = k(t, u) +d(t, up) - y + n(t, up)*z, £Y = K(ur).

The proces$1" corresponds to the adjoint process associated @vithZ") and

;
Y =E Ut HEGK(s, Us) dt + HAEY | ]—"t} .

The previous results yield the verification theorem that is a sufficient condition for a
process to be the value function.

ProPOSITION3.2 (Verification Theorem). The parametersf, &) defined by
f(t,y,2)=essinff'(t,y,2) | u € U}, & =essinfe" |u e U},

are standard parameters. L€Y, Z) be the solution of the BSDE associated with terminal
condition&é. Then Y is the value function*Yof the control problem; that is, for each
t € [0, T],

Y: =Y =essinfY |u elU}.

Proof. To showthatf is a standard generator, we have to overcome measurability ques-

tions: for given(w, t), f(w,t,y, 2) = inf{k(w, t, u) +d(w, t, W y+n(w,t,u)*z | u € U}

is a concave function with respect (g, z), with bounded derivatives. By taking the mini-
mum only over a denumerable dense fanjily,, z,)}, we define, for each, a measurable
processf (t, yn, z,) and adP ® dt-null setN such that, forw, t) € N°, f(w,t, Yn, Z7) =
inf{k(w, t,u) + d(w, t, WYy + N(w, t, U)*zy, | U € U}. For(w,t) € N°, f(w,t,y,2)is
defined as the limit of the Cauchy sequerde, t, Yn, zn) as(¥n, z,) goes to(y, 2). So,

the infimum of the linear generators defines a standard gendrator O

To apply the previous results on the infimum of standard generators, we will use the
following lemma.

LEMMA 3.1. For eache > 0there exists a feasible controf such that

(3.12) f(t, Y, Z) = essinffU(t, Y, Z) > fU(t, Y, Zy) —e, dP®dt  as,
£ = essinEY > £Y —¢, as.
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Proof. For eachw, t) € Q x [0, T[, the sets given by
{u € U | f(tv Yt((,()), Zt((,())) > k(ta w, U) + d(tv w, U) : Y'[(a)) + n(ta w, U)*Zt(a)) - 8}

and{u € U | £&(w) > K(w, U) — ¢} are nonempty. Hence, by a measurable selection
theorem (see, for example, Dellacherie 1972 or Benes 1970, 1971) and/samcEZ are
predictable processes andd, n, andK are measurable, there existd avalued predictable
processes® such that

(3.13) f(t,Y;, Zy) = essinffU(t, Y, Zy) > fY(t, Vi, Zy) — ¢, dP @ dt a.s,
£ = essinfY > &Y —g Pas. O

Proof of the Verification TheoremCorollary 3.1 and Lemma 3.1 give the desired result
directly. O

Recall that the main tool in stochastic control is fireciple of dynamic progamming
(see Fleming and Rishel 1975 or El Karoui 1981). However, in the context of BSDEs it
is nothing else than the flow property (2.11). Using the same notation as in (2.11), for
a stopping timeS < T and anFs-measurable variablés, we denote byy"(S, &s) the
solution of the BSDE with standard parametéfs fU(t, y, 2)1i<g, &s).

ProPOSITION3.3. The value functioqY;) satisfies the dynamic programming principle:
for any time t and any stopping time S witktS< T,

Yi(T, &) =ess irbllfYt”(S, Ys(T, &) Pa.s.,
ue
which can also be written
s
Y(T, &) = ess irZ}fE [f HY K(s, us) dt + HU'SYs(T, €) | ]—"t] Pa.s.
ue t ’ ’

Actually, the optimization problem is to find a 0-optimal contw8lwhich achieves the
minimum for the problem irfY§ | u € U}; that is, Y = Ygo. The comparison theorem
gives acriterion for finding 0-optimal controls.

COROLLARY 3.3 (Optimality Criterion). A control (u?, 0 < s < T) is 0-optimal if and
only if

(3.14) f(s,Ys, Zs) = fU(s, Ys, Zs) dP®ds as.,
£ = £ Pas.

In this case, 8 is also optimal for the problem starting at time t; that is; ¥ Ytuo .
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Proof. Itis an easy consequence of the second part of the comparison theorem 2.2.

From the verification theorem and Remark b, Section @/3Z) is a subsolution of the
BSDEs with parameterst Y, £V). For each feasible contral H"Y; + fé Hy' k(s, us) dsis

a uniformly integrable submartingale with increasing process give;fj bif'KS ds, where
K =—1ft Y, Z)+ Ut Y, Z).

Furthermore, the optimality criterion yields that is 0-optimal if and only iff = £ and
K¢ = 0—in other words, if and only ifr = K (u2) andH Y, + f; HY k(s, ud) dsis a
martingale. Consequently, the previous results correspond to the classical properties of the
value function (El Karoui 1981, Theorem 3.2).

In control theory the processésandv are not necessarily bounded but are integrable
enough to guarantee that the familyy) is uniformly bounded iriL,%l (El Karoui 1981,
p. 297). If f is not a standard generator, it is not possible to use the BSDE equations. The
direct study of the value function* gives thaty* is the greatest process equa tat timeT
such thaH Y/ +fot HY K (s, us) dsis a uniformly integrable submartingale for any feasible
controlu. Using arguments of weak convergence about a minimizing control sequence, it
is proved in El Karoui (1981) that* is a solution (not necessarily square integrable) of the
BSDE associated with terminal conditirand with generatof and that it is the maximal
solution.

Notice that in this example the generatois concave. We will see in the next section
that, conversely, a concave BSDE is always associated with a control problem.

Concave BSDE as InfimumHere we fix some notation and recall a few properties of
convex analysis (whose proofs are, for example, in Ekeland and Teman 1976 and Ekeland
and Turnbull 1979) in order to show that a concave generator is an infimum of linear
generators. Lef (t, y, z) be a standard generator of a BSDE, concave with respgctzio
and letF(t, B, y) be the polar process associated wiith

(3.15) Fl.t,B.y)= sup [f(w.t,y,2)-By—y"Z].
(y,20eRxR"

Theeffective domain of ks, by definition,
De ={(w,t,8,7) € 2x[0, T] x RxR"| F(w,t,B,y) < +0o0}.

Notice!® that, since by assumptiohis uniformly Lipschitz with Lipschitz constar@, the
(. t)-section ofDg, denoted byp ", is included in the bounded domain= [-C, C]"+!

10ndeed, if, for examples satisfies 8| > C, then
fl.t.y.2 = By—y*z= —Cly|+ f(0.1,0,2) — By — y*z.

Now, suggr[—Cly| — By] = +oo. Hence,(8, y) ¢ D(F""t).
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of R x R". Sincef is concave,f is continuous with respect iy, z), and( f, F) satisfies
the conjugacy relation

f@.t,y, 2 =inf{F(,t,B.7) + By +v°2 | (B.y) e DF"}.

For every(w, t, y, 2) the infimum is achieved in this relation by a p&; y) which depends
on(w, t).11

We want to associate with the polar procésa wide enough family of linesstandard
generatorst #7 such that the assumptions of Proposition 3.1 hold. Let

7y, 2 =Ft, B, ) + By + % Z,

where (8, y) are predictable processes, calleghtrol parameters Recall that by the
conjugacy relatiorf is also the infimum of #7. To ensure thaf #” is a standard generator,
it is sufficient to suppose th@s, y) belongs ta4, defined by

T
A= {(/3, y) € P, K-valued | E/ F(t, B, y)?dt < +00 }
0

A is said to be the set afdmissible control parameterget (Y, Z) be the unique solution
of the BSDE with concave standard generdt@nd terminal valug. To apply Proposition
3.1, we must show the following lemma (which is similar to Lemma 3.1).

LEMMA. There exists an optimal contrg8, ) € A such that
f(t, Y, Z) = FP7(t, Y, Z) dP @ dt as.

Proof. Recallthatforeacft, w, y, z) the infimum in the conjugacy relation is achieved,
sincef is concave uniformly Lipschitz. Also, by a measurable selection theorem and since
f(,Y, 2),Y,andZ are predictable processes, there exists a pair of predictable (bounded)
processess, ¥) such that

f(t, Y, Z) = F77(t, Y., Z0), dP @ dt a.s.

Windeed, for fixedw, ) there exists a sequencg®, y*)yn € DI such that
f.ty.2) = lim {F.t. gy + 8 + 7.
k—+o00

Now since the sequen¢g¥, y¥) is bounded, there exists a subsequence still denotéesby k) which converges
in K to (B, y). Also, (8, y) achieves the infimum sinde is continuous and

F@.t.B.y) +By +y'z= lim [F,t, 855 + 5y + g = f(o,1, Y, 2.
—> o0
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Since by assumptiorf (-, Y, Z), Z, andY are square integrable arl ¥ are bounded,
F(., B,7) belongs also thI-zr’l. Hence, the pai¢s, ), which achieves the infimum in the
conjugacy relation, belongs 1. O

For each control procesg, y) € A, introduce the dual “controlled objective” processes
(YAv, ZP-v) as the unique solution of the LBSDE with dat’ 7, £). Thus Proposition 3.1
gives directly the following result.

ProPOSITION3.4. Let f be a concave standard generator ané”fthe associated
linear standard generators satisfying

f —essinff?” | (B,y) € A} dP®dt as.
ThenP a.s. for any time t,
Y = essinfY/" | (B.y) € A}.

Let us interpret the above result as associated with a control problem, with control set
From Proposition 2.2, the LBSDEs solutidﬁ’y can be written using the adjoint process
(F{s,’sy,t < s < T), which is the unique solution of the forward linear SDE

(3.16) drszrs[ﬁst'i‘ Vdes] Ft =1,

in the following manner:

;
Yf :E[ / r{d F(s, Bs, yo) ds+ Y ém]

t

HereY?7 is called thecontrolled objective functioaf a control problem, where the running
cost function is the functiof (t, 8, y) and the terminal cost is the random variagle

3.2. Application to Recursive Utility

We come back to the example of recursive utility presented in Section 1. In an economic
or financial context the generatdnt, c;, Y;, Z;) represents the instantaneous utility (at
timet) of consumption ratéc; > 0). In general, we suppose that the consumption process
¢ belongs thI% (R*) and is such thatf (-, c, -, -), &) are standard parameters of BSDE (in
particular'? f (-, c,0,0) € H2 (R)).

Classical Properties. In this section we show that under natural conditions the classical

properties of utilities (Section 1.4) are satisfied by recursive ones; actually, it is a direct
consequence of the comparison theorem.

12For example, it suffices thaf (t, ¢, 0, 0)| < ky + ko|c| P a.s.
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PrOPOSITION3.5. Let&! and&2 be two terminal rewards which belong]hff(R). Let
c! and & be two consumption processes which belongi#gR*). Let Y°'¢' and Y&
be the recursive utilities associated withfi (t, ct, ), £1) and (f (t, ¢2, -), £2). Then the
following are true:

e (Time consistency) Suppask= €2 = £. If Y ¢ > Y*¢ and ¢d=c30<s<t,
dP®dsas, then ¥4 > Y4 0<s<t Pas.

e (Monotonicity with respect to the terminal value) Suppose=cc® = c. If €1 >
g2 Pas., then Y¢' > Yo Pass.

e (Monotonicity with respect to the consumption) Supppse- £2 = &. If the gen-
erator f is nondecreasing with respect to ¢, and §f 2 ¢, dP ® dt a.s., then
YS' > YE Pas.

e (Concavity) If the generator f is concave with respect ty,cand z, then for each
A€ [0,1], AYSHE 4+ (1 — M)YE < YO8 Pas., where c= Act + (1 — A)c? and
E=2"+ (1-nEx

Proof. We show how to prove the first point. Simrfél’é > thz'é Pa.s. and sinc¥c"¢
andY®¢ have the same generator onfy) the result follows from the comparison theorem
applied between time 0 and timheThe other properties are also direct consequences of the
comparison theorem. O

Variational Formulation of the Recursive Utility.A natural assumption for a recursive
utility is the concavity of the generatdr with respect ta(c, y, z). Consequently, by the
results on concave BSDESs, the recursive utility can be written as the value function of a
control problem.

Fix &, a terminal reward which belongs fc? (R), andc, a consumption process in
H% (R*). Let Y®¢ be the associated recursive utility—that is, the solution of the BSDE
associated with generatdnt, c;(-), -, -) and terminal valué. For a consumption ratg,
let F(t, ¢, -, -) be the polar function of (t, ¢, -, -); i.e.,

Ft,c.B,y)= sup [f(t,c,y,20—B-y—y-2].
(y,20eRxR"

Let.A(c) be the set of admissible procesggésy ) such thait fOT F(t, ¢, B, )2 dt < +o0.
Then by Section 3.1 the recursive utility can be written as

T
(B,y)eA t ’

Hence the recursive utility©¢ can be defined through a felicity functiénfirst introduced
by Geoffard (1995) in the deterministic case. The felicity functio, c, 8, y) at some
current timet, expressed in terms of current time, is a function of current consumgtion
current rate- 8, and risk premiun+y. This function can be thought as an ex post felicity
when the agent knows the current rate and the risk premium.

Notice that the adjoint process€$” can be interpreted as a deflator (Duffie 1992 or
Duffie, Geoffard, and Skiadias 1992). Also, the proc’éﬁ’% can be interpreted as an ex
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post utility, when the deflator is given b*){”. Hence, the utility is equal to the minimum
of ex post utilities over all price deflators. Ex ante the optimal deflator is the one that
minimizes the agent’s ex post utility.

Concerning the wealth process associated with some portfolio consumption strategy, we
have the same kind of interpretation, as we shall to see in the next section.

3.3. Application to European Option Pricing in the Constrained Case

A general setting of the wealth equation (which extends the examples of Section 1.3) is
(317) —dXt = b(t, Xt,()'t*ﬂt)dt—ﬂt*()'t dVV[

Herebis a real process defined éhx [0, T] x R x R" satisfying the standard hypotheses
of a generator. The classical case (Section 1.2) corresponds to a linear functional

b(t, X, z2) = —ryx — 2°6; ,

wheref is the bounded risk premium vector ani the bounded spot-rate process. Notice
that, sinceb is Lipschitz, given an initial investmentand a risky portfoliar, there exists
a unique wealth process solution of the forward equation (3.17) with initial value

A price system is a mapping which maps a contingent claign> 0 onto its (predictable)
price procesgW;(£), 0 <t < T) such that

At any timet, the priceW; (¢) for a positive contingent clairh is positive.

At any timet, the priceW¥; (¢) is an increasing function with respectgo
No-arbitrage holds for these nonlinear strategies; i.€% i £2, and if the pricesx!
and X2 coincide on an evem € 7, then onA, &1 = £2, ass.

Furthermore, a price systenis admissible for the sellers if at any tihehe pricew; (¢)
is a convex function with respect &

Let& > 0 be a square-integrable contingent claim. As in the classical case the price for
the contingent clairg is the wealth process associated with an admissible strategy which
financest; i.e., (X.o*r) is the square-integrable solution of BSDE (3.17) with standard
parametersgb, £).

Let us show that, under some conditions, this priceMulé) = X defines a price system
admissible for the sellers. Actually, the comparison theorem gives sufficient conditions so
that these different properties hold:

e The price is increasing with respect to the contingent claim, and the property of
no-arbitrage corresponds exactly to the strict comparison theorem.

e Supposé(t, 0,0) > 0,dP ® dt a.s. Then the price is positive and it is smaller than
any supersolution of BSDE (3.17).

e Supposeb is convex with respect tox, z). Then the price system is convex with
respect to the terminal value.

This convexity property holds in all examples of Section 1.3, where the prices are viewed
as superprices. In the next section we give a variational formulation of this price system
whenb is assumed to be convex.
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Variational Formulation of the Price SystemSuppose that the generatois convex
with respect tax, z). Let B(t, B, y) be the polar process associated viath

(3.18) B p.y) = inf [bt.x.2)+px+y"2.

X,Z)eR x

Theeffective domain of Bs, by definition,D}3 ={(B,v)| B(t,B,y) > —oo}. Sincebis
convex, (b, B) satisfies the conjugacy relation

b(t, x,2) = sUpB(, B, 7) — Bx —y.z| (B, ¥) € Dg}.

The results on concave BSDEs give

PrROPOSITION3.6. Let (X, w) be the hedging strategy f@r such that(X, o*x) is the
unique solution of BSDE (3.17), with convex standard paraméleis). Then X can be
written as the maximum of ex post prices over all feasible deflators; that is,

Xy = esssupX{” | (8,y) € A},

whereA is the set of 8, y) feasible control parameters, defined by

T

Az{(ﬁaV)EPHE/ B(tsﬁtvyt)zdt<+00}
0

and where, for each pair of control parametéfs y) € A, the ex post strategyX?” , 787)
corresponds to the unique solution of the LBSDE

(3.19) —dX!" = (B(t, B, 1) — B XL — () oral”)dt — (P )ior dW,
XL =¢.

The ex post strateggX??, 7#7) is a classical hedging strategy against the clairm a
fictitious market, with bounded interest rate procgsdounded risk premium procegs
and cost function B. Furthermore, the price of the contingent ckaisthe standard price
in an optimal fictitious market associated wiih, ) which achieves the supremum in the
conjugacy relation

(3.20) b(t, X, o7'm) = B(t, B, V1) — B Xt — (P)foim dP ®@ dtas.

We remark that the only difference in the nonconstrained case is the fact that the optimal
fictitious market depends on the claim to be priced (and also the introduction of a cost
function).

EXAMPLE. We come back to Example 1.1 (Section 1.3, hedging claims with higher
interest rate for borrowing) and solved by Cvitanic and Karatzas (1993) under slightly
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different assumptions. Here we suppose the mairiy— to be a bounded process. The
hedging strategy (wealth, portfoligX, ) satisfies

n _
(321)d Xt = iy X¢ dt + 7Tt*0't91 dt + 7Tt*0't dVV[ — (R =1y (Xt — Zﬂ;) dt,

i=1
Xr = £.

Like the other coefficients, the proceBs(R; > r;) is supposed to be bounded. The
generatob of this LBSDE is given by the convex process

bt, x, o) = —r¢x — w016 + (R —ro(X — o)~ .
The polar procesB(t, 8, y) associated witth is given by

ify =6 +o7%ry —p)landr, < B < R,

0
(3.22) B, B,y)= {_oo otherwise

By Proposition 3.6, it follows that the unique solutiox, o *x) of the BSDE (5.14) satisfies
X; = esssupX? | r < g < R},
where

—dX! = B X{ —[ot6: + (re — Ul dt — (2l )'odW, Xy =&,

REMARK. The problems with constraints on the wealth (El Karoui et al. 1995) or on
the portfolio (El Karoui and Quenez 1995; Cvitanic and Karatzas 1992, 1993) can be
formulated formally in the same way but with a generator which can be infinite, with
nonbounded effective domain. For example, the case of an incomplete market (Section 1.3)
and, more generally, the case of the portfolio proegsseing constrained to take values
in a convex seK (Cvitanic and Karatzas 1992) corresponds formally to an upper price
(Xt,0 <t < T) solution of BSDE (3.17) with generator

b(t, X, Ut*ﬂ.') = —IX — 7'[*()"[9'( + 1k (m),

wherelg () is the indicator function oK in the sense of convex analysis, namely equal
to 0if € K and equal tao otherwise. Notice that the example of an incomplete market
correspondstK = {7 e R" | 7y =0, j <k <n.}

The variational formulation of the price remains almost the same as the one described
in Section 3.3. However, as in the example of an incomplete market, the effective domain
is not bounded; moreover, the supremum is not attained dnd) is not the solution of a
classical BSDE.
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4. MARKOVIAN CASE
4.1. Forward-Backward Stochastic Differential Equations

In this section we consider the solution of certain BSDEs associated with some forward
classical stochastic differential equations. For example, the forward equation can be the
dynamics of some basic securities as in Section 1.1. Now suppose that the randomness of
the parametersf, &) of the BSDE comes from the state of the forward equation. When
the initial conditiong(t, x) for the forward equation are taken into account, the backward
solution(Y, Z) can be viewed as a parametrized BSDE where the parameters are the data
(t, xX); consequently, some regularity properties of the solutions follow from regularity
properties of the coefficients of the forward and backward equations.

However, the main property of forward-backward SDEs (FBSDES) is that the solution
(Y, Z) of the BSDE can be written as functions of time and the state process. The solution
is said to be Markovian. When the generafodepends not oy andz but only on time
and the state process, the Markov property of the forward diffusion allows one to express
the BSDESs solution by means of the diffusion semigroup or as a viscosity solution of the
second-order associated PDE. For Markovian standard parameters the same property holds
and gives a generalization of the Feynman-Kac formula for nonlinear PDEs as stated by
Peng (1991), Peng (1992b), and Pardoux and Peng (1992).

The Model. For any given(t, x) € [0, T] x RP, consider the following classicaldt™
stochastic differential equation defined onTQ:

4.1) dP; = b(s, Ps)ds+ o (s, Ps) dW, t<s<T,
Ps = x, O<sc<t.

The solution of (4.1) will be denotedP!*, 0 < s < T). We then consider the associated
BSDE

(4.2) - dYS - f(S, Pt,)(’ Ys, Zs) dS— Z: dWS,
Yr = W(Pr9).

The solution of (4.2) will be denotedY*, ZL*), 0 < s < T}. The coupled system (4.1)
and (4.2) is said to be an FBSDE and the solution is denoted Py, Y!*, ZL*), 0 <
s<T}

Here f (resp.¥) is anRY-valued Borel function defined on [0] x RP x RY x R"™<d
(resp. onRP), andb (resp.o) is anRP-valued (respRP*"-valued) function defined on
[0, T] x RP. Standard Lipschitz assumptions are required on the coefficients; that is, there
exists a Lipschitz consta@ > 0 such that

lo(t, X) —o(t, y)| + |b(t, X) — b(t, y)|
| T, X, y1,z1) — T(t, X, ¥2,22) |

CA+Ix—yD,
Cllyi—Yy2l+lza—21].

IATA
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Finally, we will suppose that there exists a constarstuch that, for eacts, x, , y, 2),

lo(t, X)| + |b(t, X)]|
[Tt Xy, 2]+ [¥(X)]

C@+ IxD,
C@+I[xI”)

=
=

forrealp > 1/2.

Properties of Solutions of BSDEs Associated with Some FSDHeese equations are
in a quite complex way examples of BSDEs parametrized by the initial conditiorof
the FSDE. The parametrized generator is given hert(ByP!*(w), y, z) and the terminal
condition by&(w) = \D(P}’X(w)). As in Proposition 2.4, regularity properties of the
solutions follow from regularity properties of the parameters of the BSDE.

ProPOsSITION4.1. 1. For each te [0, T] and x € RP there exists C> 0 such that

;
(4.3) E ( sup |Y;~X|2) +E </ |Z§"|2ds> <C@A+|x?.
0

0<s<T

2. Supposethat f andl are globally Lipschitz with respectto x, uniformlyint concerning
f. Thenforeach,tt’ € [0, T],t <t/,and x x’ € RP, there exists C> 0 such that

i
(44) E[ sup [Y3* — Y]+ E [/ 28 - zé’*x'lzdS}
0

0<s<T

<CA+ XX = X2+t —t]).

3. Ifb, o, f, and¥ are twice continuously differentiable with respect to x with uniformly
bounded derivatives, then for each t the functiomx (Y'*, Z'"%) R > HTZ.ﬂ(Rd) x
HTZ_ ﬂ(R“Xd), is differentiable. Let the matrices of first-order partial derivatives 6f P
Y'X and Z:'* with respect to x be denoted by thexpp matrix 3, Pt*, by the dx p
matrix d,Y'X, and by the dx p matrixd, Z"* respectively (where ‘2> is the it" line of
the matrix 2X). Then, fort<s<T,

(4.5) —daYS* = [9yf(s, PE*, Y&X, ZE9)a Y

s * 's »
+d, (s, PY*, YEX 2099, 2] ds
+ox (s, Ps, Yo, Zo)oxPsds — Y 0, Z¢ dWE

1<i<n

WYP* = aW(PP)a PR,

Proof. AsinProposition 2.4, the results follow from regularity properties of the standard
parameters given byf (s, PYX, y, z), ¥( P{’X)), so for this proof regularity properties with
respect tat, x) are required orP"*.

Using the classical martingale inequalities (Karatzas and Shreve 1987, Theorems 3.28 and
2.9), we derive by classical techniques that, for éathe [0, T], t < t/, andx, X’ € RP,
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there exist€ > 0 such that

IA

(4.6) E ( sup |Ps”|2> CL+ [x?,

0<s<T

E( sup |PY — PS‘“X’|2>

0<s<T

IA

C@+Ix?) (Ix = X2+ |t —t]).

Using the first inequality and the a priori estimates, we easily obtain inequality (4.3).
Suppose now thaf, U are globally Lipschitz with respect t(x, y, z). Then, from the
above inequalities, the a priori estimates, and the factthat_ipschitz with respect ta,

we obtain inequality (4.4).

It remains to show the third statement. Suppose Ithat, f, andW¥ are continuously
differentiable with respect to, y, andz with uniformly bounded derivatives. Recall (Krylov
1980) that the proce$d"* is differentiable with respect toand that the matrix of the first-
order derivativesy P!* is a solution of the FSDE

daxPE* = aub(s, PLX) 8¢ PE* ds + dyoi (s, PEX) 8 PX*dWL, P =1,

where we use the convention of summation over the repeatediinflterni = 1 toi = p,
ando; denotes théth column of the matrixr. Then, using exactly the same arguments as
in the proof of Proposition 2.4, the result easily follows. O

REMARK. If b, o, f, and ¥ are continuously differentiable with respect xoy, and
z with uniformly bounded derivatives, then the solutit@Y}*, ZL*); s € [t, T]} is also
differentiable in Malliavin’s sense (see Section 5.2) and there exists a version of the Malliavin
derivative denoted byDy Y., D, ZL*, 0 < 60,t < s < T) which satisfieDgY}* = ZL*
dP ® ds-almost surely. This property is very useful for computing or estimafirffgrhich
corresponds to the hedging portfolio in the pricing theory of contingent claims).

An important property is tha,"”* is deterministic. More precisely, the measurability
properties of PL*; s € [t, T]} still hold for the solution{(YSX, ZL*); s € [t, T]}.

PROPOSITION4.2. The solutior{(YS*, ZL*); s € [t, T]} of (4.2) is adapted to the future
o-algebra of W after t; that is, it i/t -adapted where for eachs [t, T], Ft = o(W, —
W, t < u < s). In particular, ¥* is deterministic. Consequentlyl = Y™ and
Zt* =0for0<s<t.

Proof. Recall first that pathwise (and strong) uniqueness holds for (4.1) (Karatzas and
Shreve 1987, pp. 285, 287, 301). Consider now the translated Brownian riddtiamd its
associated filtration defined WY, = Wi;s—W, , 0 <s < T—t; F, = F{,,0<s< T—t.

Let (P[®¥, 0 <s < T —t) be the(F,)-adapted solution of the SDE

(4.7) dP. =b(s, P)ds+o(s, PH)dW,  Pj=x.
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By uniqueness for the FSDBM* = P5¥, 0 < s < T —t, a.s. (consequentiP!* is
Fi-adapted). We then consider the associgteddapted solutionYy, Z,, 0 <s < T —t)
of the BSDE

(4.8) —dY, = f(s+1t, P, Y, Z)ds— (Z)* dW, Yi =W (Pr_p.

Hence, {(Y{_;,Z,_ ), t < s < T)} is a solution of (4.2) ont[ T]. By uniqueness,
Yy, ZL ) = (YA Z8%)  t < s < T. Consequently{(Y{ ,Z, ,),t <s < T)}is

Fi-adapted. |

Markov Properties of Solutions of BSDEs Associated with Some FSD¥emther way
to prove thaty;* is deterministic, and more generally thgt® is a deterministic function
of P!X, is to use the iterative construction of the solution of the standard BSDE by noticing
that if f does not depend ow, z then the property follows from the Markov property of
the forward diffusionP®*:

:
Yo =E [W(P%’X) + / fr. P dr|fs} = ®(s, P,

S
where
T
o(s,y) =E [\p(PTS*y) +/ f(u, Pjy)du] )
S
The solution of the BSDE is said to darkovian Furthermore, the proce&$* associated
with Y** by the martingale representation theorem is also a deterministic functieiof
This result can be deduced from Cinlar et al’s (1980) study on the functional additive
martingale of a diffusion process (see also Dellacherie and Meyer 1980, pp. 241-244). In

our notation, Theorem 6.27 in Cinlar et al. (1980) can be written as follows.

LEMMA 4.1. Let . be the filtration orRY generated by the functions

]
E f $(s. P¥)ds,
t

whereg is a continuous boundeR®-valued function. Then for an§e-measurable f and
W such that

]
E/ f(s, P2ds < 400, E[W(PE)Z] < +oo,
0

the process ¥* = E[\IJ(P}’X) + fST f(r, P**) dr|Fs] admits a continuous version given
by Y&* = u(s, P5¥), where ut, x) = E[W(Py*) + ftT f(r, P*) dr] is Be-measurable.
Moreover,ftS f(r, P4 dr +Y}* is an additive square-integrable martingale which admits
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the representation
S S
/ f(r, PP dr 4 Y =/ dr, P (r, PY) dW, t<s<T, Pas.,
t t

where dt, x) is B([0, T]) ® Be(RP*9)-measurable.

We now consider a BSDE associated with an FSDE whose data satisfy the general
assumption at the beginning of the section and prove that the solution & tiiie‘, ZL>),
is Markovian in the sense that both of these processes only depenahotP! *.

THEOREM4.1. There existtwdS ([0, T])®@B(RY)-andB([0, T])®@B(RP*%)-measurable
deterministic functions @, x) and d(t, x), respectively, such that the solutiont*, ZtX)
of BSDE (4.2) is

Yi* = u(s, PY),  ZYX =o*(s, PEYd(s, PYY), t<s<T,dP®dsas.

Furthermore, for any;-measurable random variabje € L2(RP), the solution(Ys*, Z&%)
is given by(u(s, P&%), o*(s, PS*)d(s, PY*)), fors > t, dP ® ds as.

Proof. This result can be established by the iterative procedure used in the proof of
the existence of the solution of a backward equation (Theorem 2.1 and Corollary 2.1).
This procedure gives a recursive construction of the solytféri, Z4) from the sequence
(YK 700k defined byy -0 = 0, 00 = 0, and

—dYEH = f(s, PYXYE ZHds— (ZEhrdw, Vet = w(PrY).

We know from Corollary 2.1 that the sequen@€*, Z&¥-k) convergesiP ® ds a.s.

to (YY*, Z"*) the unique square-integrable solution of the BSDE;¥b¥ we also have
that suR 7 1Yk — Y| converge® a.s. to 0. By Lemma 4.1, the theorem holds for
parameters f, £) depending only orgs, Pt*). By applying Lemma 4.1, we conclude by
recursion that there exists sofig-measurable functionsg, dy such that

YK = (s, PP, ZE = o (s, PY¥) dk(s, PY).

Put

u' (s, x) = limsupui (s, ), d"i(s, x) = limsupd,’ (s, x),

k—+o00 k—+o00

=I=p. =)=

the sequencey &k Z®X).ky to (YLX Ztx) it follows thatP a.s.,¥s € [t, T],

u' (s, PY%) = (lim supul) (s, P}*) = limsup(ul (s, PL%)) = kILngo YLE0K =yl

k— o0 k—o0
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The same properties hold fdy and we derive thad(s, P}X) = z8®, dP® dsa.s. O

By Proposition 4.1, it follows that if the coefficients are supposed to be regular, then the
functionu satisfies some additional regularity properties. In particular, if the coefficients are
differentiable, recall that the solution is differentiable in the usual sense and in Malliavin's
sense and thds is given (almost surely) by the Malliavin derivatii® Ys (see Section 5.1
for a precise definition oDsY). In this case the functiod can be written as a function of
dyu ando.

COROLLARY 4.1. We suppose that,lp, f, and ¥ are globally Lipschitz with respect
to (X, y, 2), uniformly in t concerning f. Then u is locally Lipschitz in x ah®-Holder
continuous int. Furthermore, if lor, f, andW are continuously differentiable with respect
to (X, y, ) with uniformly bounded derivatives, thenfox t <s < T, x € RP,

ZL* = o (s, PI)*acu(s, PH*)dP ®@ ds as.

Proof. The first statement is a direct consequence of (4.3) and (4.4). Let us show the
second one. Recall that* is differentiable with respect ® in H7%, and inS%; hence,
u is differentiable with respect to. SinceY!* = u(s, P!¥), it follows by the chain rule
(see Nualart 1986, p. 90; 1995, Proposition 1.2.2) at!* = DsP!* dcu(s, PL¥).
Then, using the fact tha&l* = DsY!* andDsP!* = o (s, PI*)* almost surely, the result
follows. O

BSDE and Partial Differential Equations.In this section we study the relation between
these forward-backward equations and partial differential equations (PDE). We first give
a generalization of the Feynman-Kac formula stated by Pardoux and Peng (1992). Then
we show that, conversely, under smoothness conditions the funetior) = Y{™* is a
solution in some sense of a PDE.

ProPOSITION4.3 (Generalization of the Feynman-Kac Formula)Let v be a function of

classC!2 (or smooth enough to be able to appl§'# formula tov(s, P4X)) and suppose
that there exists a constant C such that, for e&gtx),

[v(s, X)| + o (S, X)*axv(s, X)| < C(L+ |X]).

Also,v is supposed to be the solution of the following quasilinear parabolic partial differ-
ential equation:

dev(t, X) + Lou(t, X) + f (1, x, v(t, X), o(t, X)*oxv(t, X)) =0,

(4-9) (T, X) =¥ (X)),

wheredyv is the gradiant ofv and L x, denotes the second-order differential operator

Lo =y &t 0%, +Y b, )k, a5 =3[c0;.
i i
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Thenu(t, x) = Y%, where{(Y}*, Z1¥),t < s < T)} is the unique solution of BSDE
(4.2). Also,(YS*, Z8%) = (v(s, PE9), o (t, PE¥)*ocu(t, PE)) , t <s<T.

Proof. By applying I©’s formula tou(s, P:*) we have
du(s, PI¥) = (du(s, P¥) + Lu(s, PY) ds + dyv(s, PL*)*o (s, PY*) dWs.
Sincev solves (4.9), it follows that

—du(s, PI¥) = f(s, PI*, u(s, PE), o (s, PY)*av(s, PL¥)) ds
— (s, PM¥)*a (s, PEX) dWs

with (T, Pp*) = W(Pr). Thus, {v(s, PY), o (s, PE)* (s, PIX), s € [0, T]} is
equal to the unique solution of BSDE (4.2), and the result is obtained. O

REMARK. Ma, Protter, and Yong (1994) use this point of view to study some more general
FBSDEs of the type

(4.10) df's;x = b(s, ng, YEX ZEyds+ o (s, PEX, YEX) d W, t<s<T,
’ PeX = X, <s<t,

—dYEX = (s, P, YEX, Z8%) ds — (Z%)* W

(4.11) Y g (LX)

Their motivation is to prove the existence and the uniqueness of an adapted solution
(X, Y, 2) of this system. Antonelli (1993) had already proved the existence of such a
solution, using a fixed-point theorem in the case whedpes not depend o and only
under the assumptic® T < 1, whereC is the Lipschitz constant of (it means that there
exists a solution on a small interval only). He also gave some examples for which this
condition is not satisfied and there is no solution of the FBEs. Thus, Ma et al. (1994) are
concerned with showing the existence of an adapted solyg¥ory, Z) of (4.10), (4.11)
without the assumptio& T < 1. Their method is the following: they know by analysis
results that, under some strong assumptions on the coefficients, there exists a classical so-
lution of the associated PDE. Using this solution, they state, by a verification method, the
existence and uniqueness of the system of forward-backward equations.

Their method was used in the mathematical finance setting in a recent preprint, “Hedging
options for a large investor and forward-backward SDE’s,” by Cvitanic and Ma (1994) and
in “Black’s consol rate conjecture,” by Duffie, Ma, and Yong (1994).

We now show that, conversely, in certain cases the solution of the BSDE (4.2) corresponds
to the solution of the PDE (4.3). ¢f = 1, we can use the comparison theorem to show that
if b, o, f, andW¥ satisfy the assumptions at the beginning of the section ah@ifd¥ are
supposed to be uniformly continuous with respect tthenu(t, x) is a viscosity solution
of (4.9) (Peng 1992b; Pardoux and Peng 1992).
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THEOREM4.2. We suppose that & 1 and that f andl are uniformly continuous with
respect to Xx. Then the function u defined oy, ) = Y;"* is a viscosity solution of PDE
(4.9).

Furthermore, if we suppose that for each R 0 there exists a continuous function
mg: R, — R, such that g(0) = 0 and

(4.12) 1ft,x,y, 2 — f(t, Xy, 2] < mr(Ix — X[(L+ [2])),

forallt € [0, T], IX], IX| < R, and|z] < R for ze R", then u is the unique viscosity
solution of PDE (4.9).

Before giving the proof, recall the definition of a viscosity solution (Fleming and Soner
1993).

DEFINITION 4.1. Supposal € C ([0, T] x RP) satisfiesu(T,x) = ¥(x), X € RP,
Thenu is called aviscosity subsolutioffresp.supersolutiop of PDE (4.9) if, for each
(t,x) € [0, T] x RP and¢ € C+?([0, T] x RP) such thaip(t, x) = u(t, x) and(t, x) is a
minimum (resp. maximum) o — u,

qp(t,x) + Lo, X) + F(t, X, ¢(t, %), o(t, X)" (1, X)) = 0

(resp.
P (t, X) + Lo, x) + f(t, X, (L, X),o(t, X) (L, X)) <O0).

Moreover,u is called aviscosity solutiorof PDE (4.9) if it is both a viscosity subsolution
and a viscosity supersolution of PDE (4.9).

Proof of Theorem 4.2The continuity of the functiom with respect ta(t, x) follows
from Corollary 4.1. Now we show that is a viscosity subsolution of (4.9) (the proof is
the same i is a supersolution). Let, x) € [0, T] x RP and¢ € C*? ([0, T] x RP) be
such thatp(t, x) = u(t, x) and¢ > uon [0, T] x RP. We can suppose without loss of
generality that is C> and has bounded derivatives.

Forh > Owe havep(t+h, P1}}) > ut+h, P5}) = Y}, so one could think of letting
h tend to 0 in the inequality

t+h t+h
¢t +h, PSY) — o, x) — / f(s, PI*, YEX, ZE ds + / Z*dwWs > 0.
t t

But we do not know if the proces&.* converges to (t, X)*dx¢ (t, X).

BIndeed, if¢p € C12([0, T] x RP) such thaw(t, x) = u(t, x) and(t, x) is a minimum ofp — u, then it is
possible to construct a sequence of functiprse C* with bounded derivatives such thag (respectively its
first and second derivatives) convergesst@respectively its first and second derivativesagnds to infinity,
uniformly on compacts.
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Now let{(Ys, Zs), t < s <t + h} be the solution of the BSDE
. t+h - t+h_
Ys = ¢(t+h, Pttfh) +/ f(r, P, Y, Z ) dr — / Z, dW, .
S S

Note that(Y, Z) has the same generator &6 Z), but the terminal condition is given by
ot +h, Ptt;xh) (which is greater thai; ., = u(t + h, Pttj‘h)). By the comparison theorem
and continuity of the processes, itfollows tNat> Y** = u(t, X) = ¢(t, X). Thenwe have
to show that, by lettinds tend to 0,Y tends tog (t, X) andZs tends tody¢ (t, X)*o (t, X).
Actually, a development of until the first order suffices to obtain the result.

First, putG(s, X) = 954 (S, X) + L (S, X) + F(S, X, (S, X), oxP (S, X)o (S, X)) fort <
s <t +h. Notice that we want to show théx(t, x) > 0. Now putYs = Ys — ¢ (s, PLX) —
f;*h G(r,x)dr, Zs = Zs — dx¢po (s, PL¥). We show that; = he(h), wheree(h) — 0

ash — 0. By It&’s formula,(Ys, Zs), t < s <t + h, is the unique solution of the BSDE

t+h
(4.13) Ys =/ f(r, PY%, o(r, Prt*x)+\~(r+ft+hG(v,x)dv, dxgpo (r, PP+ Z,)dr
S

r

t+h t+h
+/ [(8I’¢ + ﬁd))(r? Prt’x) - G(rv X)] dr - / Zr dVVr .

We first show th~a(\~(, Z) tends to(0, 0) ash goes to 0. By the a priori estimates applied to
(YL, ZYH = (Y, Z2) and(Y2, Z%) = (0, 0), it follows that

. t+h t+h
E[ sup |Ys|2] +E [/ |ZS|2ds] < KE[/ 15(r, h)|2dr] ,
t<s<t+h t t

where

8(r,h) = =G, x) + (3¢ + L) (r, PEY)

t+h
+ (r, P, ¢ P + / G, x)dv, o1, B o, P:’X>> :
r

Now since sup¢_,n E(IPS* — x[?) — 0 ash — 0, and since all the coefficients as well
as¢ and its derivatives are uniformly continuous with respect,tit follows that

lim sup E[|s(r,h)?] = 0.

h—=0t<r<t+h

Hence we obtain

_ t+h t+h
(4.14) E[ sup |Y5|2] +E [/ |ZS|2ds] < K]E[/ 18(r, h)|2dr] < he(h),
t t

t<s<t+h
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wheree(h) — Oash — 0. Consequently, we only haw$ /| " (|¥s|+|Zs|) ds] = h./e(h)
(by the Cauchy-Schwartz inequality), and this estimate is not sufficient:fare need to
haveY; = he(h).

Note that by taking the expectation in (4.18),= E(Y,) = E[ /™" §'(r, h) dr], where

§'(r,h)y = —G(r,x) + (3¢ + L) (r, PM)
t+h
+ £, PY%, o(r, PY) + Y, + G, x)dv, a*(r, P*)do(r, PY) + Z,).

r

Sincef is Lipschitz,|8'(r, h)y—&(r, h)| < K(|Y;|+]Z,]), and by (4.14)Y;
e(h) — 0 ash — 0. Hence, sinc&; > ¢(t, X), we haveftt+h G(r, x)dr

he(h), where
—he(h), so

vl

1 t+h
—/ G(r,x)dr > —e(h).
h Ji

Then by lettingh tend to 0 we obtain

G(t,x) = dp(t, x) + Lo, X) + F(t, X, P (t, %), I (t, ¥)a(t, X)) =0.

Henceu is a viscosity solution of (4.9).

It remains to show the second statement of Theorem 4.2. Suppose that (4.12) is satisfied.
Then, by the uniqueness result of Ishii and Lions (1990), (4.9) has at most one viscosity
solution. The result follows. O

Whend > 1, Pardoux and Peng (1992) gave the following result.

PROPOSITION4.4. All the functions bo, f, and g are assumed to I6€ with bounded
derivatives. Thend, x) = Y;"* belongs t&*? ([0, T] x RP, RY) and it solves PDE (4.9).

Sketch of the proofRefer to Pardoux and Peng (1992). By Proposition 4.lelongs
to C%1([0, T] x RP, RY). The proof thau is C? with respect tox needs some estimates of
sup, | Zs|? which can be given by the properties of the Malliavin derivative (Pardoux and
Peng 1992). Furthermore,

u(t +h,x) — u(t, x) = [uct +h, x) —ut +h, PY)I + [ut +h, P5) — udt, x)].

The second term on the right sidef + h, P;}) — u(t, x), is equal toY;}, — Y{*, since,

by Theorem 4.1Y;}}, = u(t + h, P\}},). Then, by applying tt’s formula betweers = t
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ands =t + htou(t + h, P}¥), it follows that

t+h t+h
ut+h,x) —u,x) = — Lu(t +h, PS*)ds — / (BxU)*o (s, PL¥) dWs
t t
t+h

t+h
—f f (s, P"X,Y;X,Z;*X)ds—i—/ (ZY)* dWs .
t t

By Corollary 4.1 we haveZL*)* = (dcu)*o (s, PEX). Then by dividing byh and lettingh
tend to O, it follows thau is differentiable with respect tband that is a regular solution
of (4.9). O

4.2. Application to European Option Pricing in the Constrained and Markovian Cases

In this section we give a simple application to finance which shows that Markovian
BSDEs are a useful tool in pricing theory since they give a generalization of the Black-
Sholes formula, in the sense where the price of a contingent claim which only depends on
the prices of the basic securities has the same property. Also the hedging portfolio depends
only on these prices.

Consider a financial market model with coefficients which only depend onsteme on
the vector of stock price process. Fix (t, x) € [0, T] x R™1. Here, the prices of the
basic securities satisfy the following equations tnl]:

(4.15) dP? = r(s, P5) P2ds,
n
(4.16) dP. = P! [,ﬂ (s, Py dt+ > o/ (s, Ps)dwsf} .
=1
Let (P!*,t < s < T) be the vector of stock price processé®:* = (P2, PL,..., P

with initial condition given byP"* = x.
In this context a general setting of the wealth equation is

(4.17) —dXs = b(s, P, Xs, 0(S, Ps)*rs) ds— mZo (s, Ps) dWs.

Herebis anR-valued continuous function defined on 0] x R™! x R x R" that is Lipschitz
with respect tax, =) uniformly int. The classical case (Section 1.1) corresponds to

b(t,x,y,2) = —rt,x)y — 6", x)z,

whered (t, x) is the risk premium vectol (t, X) = o ~2(t, X) (u(t, X) —r (t, X)1). Consider
a contingent claing :¢(P}’X). Here,¢: R”jl — RT is Lipschitz. There exists a unique

square-integrable hedging strateg¢}*, ='*) H%d X H%’”Xd against such that

(4.18) —dXL* = b(s, PX*, XL*, o (s, P nt¥) ds — (l*) o (s, PL*) dWg,
X¥* = ¢(Pr’)
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andX.* is the price of the contingent claig( P}’X) attimes. Then from the results of this
section, the value at timeof the contingent claing is

t, t,
X¥ =u(s, P,

whereu(t, x) = X{™* is the unique viscosity solution of the nonlinear parabolic PDE

82
e 5y Za.,(t x)x.x,a e (t, x)

(4.19) +Z“' (t, x)x. (t X)+rt, x)xo—(t X)
= —b(t,x, u(t,x),a*(t,x)[ 2.
u(m, x) =¢(x),

wherea;j ¢ x) = z[oa*]., (t,x) and @( ] = (X 0“ (t, X)). Also if the functionb is C2 with

bounded derivatives, thanbelongs t(ﬁl 2([0, T] x R™1 R) and it is a regular solution
of the PDE. Notice that the portfolio process of the hedging strategy is then

0 -

- ou .
=PS'K(S,P5)7 t<s<T, 1<icz<n
i

5. ADDITIONAL RESULTS: GENERALIZED BSDES AND MALLIAVIN
DERIVATIVES

5.1. LP Solutions of BSDE and Extension of the Filtration

In this section we give some generalizations for the solutions of BSDEs. We relax the
assumption that the underlying filtration is a Brownian filtration, and only suppose that
(Fy) is aright-continuous complete filtration. Furthermore, we are interested in solving the
BSDE under gp-integrability assumption of the parameters. The definition of a solution
of BSDE must be extended in the following way. Consider the generalized stochastic

backward differential equation (GBSDE)
(5.1) —dY, = ft, Y, Zodt — ZfdW — dM, Y1 =&,

or, equivalently,

T T T
(5.2) Yt = E +/ f(S, Ys, Zs)ds - / Z;dWS _/ dMs,
t t t

where

e Yisan RCLL adapted process which takes valugRin
e Zis apredictable process which takes valueR1i¢.
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e M is an RCLL local martingaleR9-valued, orthogonal to the Brownian motio,
with Mg = 0.

Suppose that belongs toL.P(RY) (i.e., the set ofFr-measurable random variable such
that ||€]|P = E(|§|P?) < +o00), p > 1, and thatf(t, 0,0) belongs toH?(Rd) (i.e.,
I1f(, 0,05 = E[(fOT | f(s,0,0)2ds))P/?] < 4+00). If f is uniformly Lipschitz, then
the parametersf, £) are said to bep-standard. In what follows, we prove a result of
existence and uniqueness for solutighsZ) in HY (RY) x HE (R™9). Buckdahn (1993)
gives the most general result in this areag(i& 2), namely when the BSDE is driven by a
general continuous martingale and a predictable increasing process.

Existence and uniqueness of the solution are shown by using a fixed-point theorem (as
in Section 2), but instead of introducing a coefficighthe contraction is first obtained
for a terminal timeT sufficiently small; then for arbitrary, the solution is obtained by
subdividing the interval [0T]. While the estimates in Section 2 are stated using It”
formula and elementary algebraic calculus, the following estimates follow from martingale
inequalities.

It is convenient to introduce the sSf(]Rd) of the RCLL adapted processeswhich
take values inRY and are such thate||§ = E[supy.-1 l¢1|°’] < +oo. Let us in-
troduce B (RY, R"9), the Banach spacgf(RY) x HE(R"9) endowed with the norm
1Y, 2018 = IVI& + 12112, = Elsupyr %P1 + EI(fy 1Z:2dt)P/2]. Note that this
definition corresponds to the definition of the classical norm for semimartingales and coin-
cides with the one of Buckdahn (1993).

THEOREM5.1. Fix p > 1 and suppose thatf, &) are p-standard parameters. There
exist a unique paicY, Z) e B and a unique martingale M HY (R%), orthogonal to the
Brownian motion, such thaty, Z, M) solves (5.1).

Proof. Wefirst prove the resultfor sufficiently small. Thenthe general caseis obtained
by subdividing the interval [0T] into a finite number of small intervals. As in the proof of
Theorem 2.1, we use a fixed-point theorem for the mappingfined 0r16$ which maps
(y, 2) intothe solutionY, Z) ofthe BSDE associated with the generat@r, v;, z). Inother
words,Y is the right-continuous version of the semimartin@l@—i-ftT f(s, Vs, zs) ds|F],
andZ is given by the orthogonal decomposition with respect to Brownian motion for the
martingaleR[£ +fOT f (s, ¥s. Zs) ds| A ]; that is,

t

;
E[s+/ f(s,ys,zs>ds|ft} =Yo+/ Z* dWs + M,
0 0

whereM; is an RCLL local martingale orthogonal W.
Let us show thatY, Z) belongs toB? (that is,¢ mapsB? onto itself) and thaM is in

HY (RY). We have, for each |Y;| < E[|£| + fOT | f(s, Vs, Zs)| dS|F], a.s. The martingale
inequalities (Protter 1990, p. 174) give

T p
IYlIg < CoE [(IEI +/0 (s, ¥s, Zs)IdS> ]
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whereC, is a positive constant which depends only on the nungbeNow the Cauchy-
Schwartz inequality shows that

T T
f 1T (S, ¥s, Z5)|ds < TY2 (/ | (S, Vs zs)|2ds)
0 0

It follows that for another constant, still denoted Gy,

1/2

T p/2
(5.3) Y& < CoE [IEI"Jer/2 (/ [f(s, s, Zs)|2d5> }
0

Sincef (-, 0, 0) is p-integrable andf is Lipschitz with respect tgy andz, it follows easily
thatY belongs taSf.
We now prove thaZ belongs tdi? (R"*%) andM belongs tdd} (RY). By Burkholder-
Davis-Gundy inequalities (Protter 1990, p. 174), sipce 1,
)]

E [(/OT |Zs|? ds+ [M]T>p/2:| < CyE [(

where M] is the quadratic variation of the local martingde Since

T
/ ZSdWS+ MT
0

T T
MT—i—/ Z;‘dWszé—i—/ f(s,¥s, z5)ds — Yy,
0 0

it follows easily that

T p/2 T P
E[(/ |zs|2ds+[M]T> }scpE[|S|p+<f |f<s,ys,zs>|ds) +Yo"]
0 0

Using the above estimates ¢|>M||§p, we obtain

A

T p/2
(5.4) 1ZIg < CpE[lstp/Z(f |f(s,ys,zs)|2ds) }
0

T p/2
CoE [IEI"+T"/2 </ [ (S, Vs, zs)|2ds> }
0

Hence,Z belongs tdi? (R™*9) andM is in Hf (RY).

It remains to show that, for a good choice Bf ¢ is a contraction. Lety?!, z') and
(Y2, Z%) be two elements oB} and let(Y?1, z%, M) and(Y?, 22, M?) be the associated
solutions. SincésY, §Z, §M) is the solution of the BSDE associated with the generator

(5.5) E(M]¥?)

IA
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f(t,y!, z1) — f(t, y?, z% and with terminal condition equal to zero, the above inequalities
give

T p/2
18Y 115 + 115218, < C,TP2E [(/O [f(s,yi, zd) — f(s,y2, Z§)|2d5) } :

Then sincef is Lipschitz with respect tdy, z) with constantC, it follows that

T p/2 T p/2
||5Y||2p+||6znﬁpstT"”(E[(/ |8ys|2ds) ]HE[(/ |azs|2ds> D
0 0

Hence, forT < 1,

18Y 18 + 18Z Igs < CpT P2(18Yll g + 1132l gz0)-

ChoosingT so thatC, T2 < 1, we have thap is a contraction and there exists a fixed
point(Y, Z) such that, Z, M) is the uniquep-integrable solution of the BSDE. Here, by

construction, the martingal! is given by the orthogonal decomposition with respect to
the Brownian motion of the martingale

T t
E[§+/ f(s,Ys,Zs)dswft] =Yo+/ ZdWs + M; . O
0 0

As in the case = 2, we can state a priori estimates.

PrOPOSITIONS.1. Let ((f', £'); i=1,2) be two p-standard parameters of a BSDE, and
let ((Y', Z', M'); i = 1, 2) be the associated solutions satisfying the conditions of Theo-
rem 5.1. Let C be a Lipschitz constant fot. PutsY; = Y! — Y2 82, = z} — Z?, and
S2ft = fL(t, Y2 Z%) — f2(t, Y2, Z?). Then for T small enough there exists a constant
Cp,1 such that

1Y 18 + I8Z115s + E(SMIY?) < CorEL(8YrIP) + (fy 152 F5I d9)P],
18Y11% + 18Z115 + E(SM]®?) < Cpr[E(8Yr[P) + TP2)|5, F[|2,].

Proof. Consider(Yl, Z1, M1) and (Y2, Z2, M?), the two solutions associated with
(f1, gYand (f2, £2). Using the same arguments as in the proof of Theorem 5.1 concerning
&Y, 8Z,5M), it follows easily that, fofT > 0,

ISY 11 + 18Z115, + E(sM]2/?)

T p
< CyE [(|8YT|") + (/O |f1(s, Y2, zh) — (s, Y2, 2] ds) } .
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Since| f1(s, Y&, 2z — £2(s, Y2, Z2)| < C[|8Ys|+16Zs[]+152 fs|, it follows that for another
constant, still denoted by,

18Y 115 + 18Z1I§,

T p
=GCp (E“SYT“) + </ 182 | dS) 1+ TPIsYIIg + Tp/2||52||,§’> .
0
ChoosingT so that maxC,TP, C,T?/?) < 1, we obtain

T p
I8Y1IS + 18Z]Ip < Cp7E [(IBYTIP) + </ 182 fs| dS> :|
0

for apositive constar@, . The firstinequality of Proposition 5.1 follows easily (for another
constantC,, 1). The second inequality follows from the Cauchy-Schwartz inequalityl

EXAMPLE. Application in Finance: &llmer-Schweizer Decomposition in Incomplete
Markets. We come back to the situation of the incomplete market as described in Section 1.3,
Example 1.3, where only some primary securities may be traded, and consider additional
constraints on the portfolio. Recall that denotes the volatility matrix of th¢ traded
securities. We assume that the matei® (o1)*) 1o is bounded. A nonadjusted hedging
strategy(V, ) of a contingent clain§ € LP(RY) satisfies

(5.6) —dV =b(t, Vi, (6)*(tm)) dt — Cr)fotdW —ddy, Vr=§,

where® is a semimartingale iihHTp (RY) called the cost process. Notice that the portfolio
17 is a j-dimensional process. TheMmer-Schweizer strategy is related to the situation
where® is a martingale orthogonal tfa ol dW. Itis easy to construct this FS-strategy as
a solution of a GBSDE.

PROPOSITIONS.2. Let (b(t, X, 2), &) be p-standard parameters an, Z, M) the as-
sociated p-integrable solution of

(5.7) —dX; = b(t, X, ZZ) dt — ZFdW — d M, Xt =&,

wherez! = (o)*(ot(o)*) Lol Then(X,!x, @), wherelr; = (ol(od)*) 1ol Z; and
ddy = ((Id — =HZy)* dW + d My, is the Follmer-Schweizer strategy.

REMARK. Example 1.3 corresponds to a Brownian filtration with

b(t, X, 2) = —rx — (61)*z.
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5.2. Differentiation on Wiener Space of BSDE Solutions

We study in detail the properties of differentiation on Wiener space of the solution
of a BSDE in the spirit of the work of Pardoux and Peng (1992). We state in a general
framework that the Malliavin derivative of the solution of BSDE is still a solution of a linear
BSDE. Applying these results to finance, we show in particular that the portfolio process
of a hedging strategy corresponds to the Malliavin derivative of the price process. This
important property was first emphasized by Karatzas and Ocone(1992) (see also Colwell,
Elliott, and Kopp 1991) in the nonconstrained case (i.e., the linear case).

Malliavin Derivative of Solution of BSDE.First, recall briefly the notion of differen-

tiation on Wiener space (see the expository papers by Nualart 1995, Nualart and Pardoux
1988, lkeda and Watanabe 1989, and Ocone 1988).

o CK(RX, R9) will denote the set of functions of clag from R¥ into RY whose partial
derivatives of order less than or equaktare bounded.

e LetS denote the set of random variabkesf the formé = o(W(hb), ..., W(h¥)),
whereg € C3°(R¥, R), ht, ..., hk € L4([0, T]; R"), andW(h') = [ (hi, dW\).

e If £ € Sis of the above form, we define its derivative as beingrikdimensional
process

k

a .
Dyt = Zl 8—)‘:<W(hl>,...,W<hk)>hJ, 0<6<T.
J:

Foré € S, p > 1, we define the norm

T p/2) 1Y/P
||$||1,p=[E{|s|P+(fo |D9§|2d9> ” .

It can be shown (Nualart 1995) that the operdiohas a closed extension to the space
DLP, the closure ofs with respect to the norr- ll1,p. Observe that if is F-measurable,
thenDy& = 0 foro € (t, T]. We denote b>Di9§, 1 <i < n,theith component oD,é&.

LetlL p(Rd) denote the set @Y-valued progressively measurable proce$sés w), 0 <
t < T;w e 2} such that

(i) Foraete[0,T], u(t, ) e (Dyp).
(i) (t,w) — Du(t, w) € (L([0, T]))"*? admits a progressively measurable version.
(i) ul3, =EL(fy lu®PdOP2 + ([ [ IDeu()?dodtP/?] < +oo.

Observe that for eacl, t, ), Dyu(t,w) is ann x d matrix. Thus, IDou(t)|? =
>i.i 1Dy (t)|2. Clearly Dyu(t, w) is defined uniquely up to sets df ® dt ® d P mea-

sure zero. PufDu|? = fOT fOT |Dyu(t)|?do dt. With this notation notice that Jensen’s
inequality gives

]
(5.8) BIDUIHP? < T2 [ iDulpds.  p=2
0
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T
(5.9) E(|Du|2)P? > TP / IDpulBds,  p<2
0

We now show that under natural conditions the solution of a BSDE is differentiable
in Malliavin’s sense and that the derivative is a solution of a linear BSDE. This result
generalizes the one stated by Pardoux and Peng (1992) in the Markovian case, and we give
a complete proof of it.

PROPOSITIONS.3. Suppose thag € D2 and f: @ x [0, T] x RY x R™d — Rd js
continuously differentiable iigy, z), with uniformly bounded and continuous derivatives
and such that, for eacty, z), f(-,y,2) isin L‘}_Z(Rd) with Malliavin derivative denoted
by Dy f(t, y, 2). Let(Y, Z) be the solution of the associated BSDE. Also, suppose that

e f(t,0,0) € H}¥(RY) andg € L4(RY).
. fOT E(|Dg&1?) do < 400, fOT IDg f(t,Y,2)]5d0 < +o0, and for any te [0, T]
and any(y?!, z%, y?, 7%),

Dy f(t, @,y 2" — Dy f(t, 0, Y2, 2)| < Ko(t, o) (Iy* — Y| + |28 = 2)),
where for a.ef, {Ky(t,-),0 <t < T}is anR*-valued adapted process satisfying
ST IKl1do < +o0.
Then(Y, Z) € L?(0, T; (D3 x (D239, and, for eachl < i < n, a version of
{(DpYr, DyZy); 0<0,t <T}isgiven by
DY, =0, D,Z=0, 0<t<6<T;

DLY, = Dgg+/ [8y f (S, Ys, Z)DyYs + 8, (S, Ys, Zs)D}; Zs + D}, f (S, Ys, Z5)] ds
t

T .
—/ Dy Zs dW, 0 <t<T.
t
Moreover,{D;Y;; 0 <t < T} defined by (ii)isa versiondZ;; 0 <t < T}.

REMARK. If K is bounded, it is sufficient to suppose thitt, 0,0) € Hz2 (RY) and
& e L?F(Rd). Furthermore, the fact thdd;Y; = Z; reveals the relation between the
wealth process and the related portfolio. This result provides an efficient tool to estimate

E [sup |Z:|P] for p > 2.

Before giving the proof of this proposition, let us recall the following lemma stated by
Pardoux and Peng (1992), which shows that aimnitégral is differentiable in the Malliavin
sense if and only if its integrand is so. For the proof, see Pardoux and Peng (1992) or
Nualart (1995, Lemma 1.3.4), but this lemma is a consequence of the commutation relation
between the derivative and the Skohorod integral (Nualart 1995, Section 1.3).
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LEMMA 5.1. Let Z € H2(R") be such that = ft Z: dW; satisfiess € D¥2. Then
Ziel2t, T,D'?),1<i <n,andd ® dP a.s.,

;
D'ngf DIZ dW, 0<t,
t

;
Dg)gzzg+/ DLZ dW, 6>t
0

Proof of Proposition 5.3 To simplify notation we restrict ourselves to the cdse: 1.
Let (YX, Z¥) be the Picard iterative sequence defined recursivelybs: 0, Z° = 0 and

—dY = f(t, YK Zodt— (ZF ) dw, YRR =g

Using the contraction mapping defined in the proof of Theorem 5.1, we know that the
sequencgYX, Z¥) converges inSt(R) ® H(R") to (Y, Z) ask — +oo, the unique
solution of the BSDE.
We recursively show thaly®, zK) e 1L2(0, T ; D2 x (D¥2)"). Suppose thatrk, z¥) e
L2(0, T ; D2 x (DY2)") and let us show thatrkt1, zk+1) | s in ]L2(o T: D2 x (D¥2)").
Sinceé—i—ftT f(s, YS", Z¥)dse DY thenY ! = E[s+ [ f(s, YK, Z¥ dslR] € DV2
Now, & + f f(s, Y, Z5ds— Yt = f (Z¥1y* dWs. 1t follows from Lemma 5.1 that
Zk+1eL2(0 T, (]D)lz) ) andfor0<9 <t,1<i<n,

—dDL YK = [a, f(t, YK, ZODL YK+ 9, f(t, YK, ZD)ZE + Dy f(t, YE, 2] dt
—(DyZEH* dW,
D,Y£™ = Dj&.

Hereafter, to simplify notation we assume that the Brownian is one-dimensional.
We will show that(DyY¥, D, Z¥) converges taY?, z%) in L, (= L?(0, T ; D2 x
DY2)), where(Y?, Z¢, 6 <t < T) is the solution of the BSDE.

(5.20)—dY! = [8yf(t, Y, ZOYY + 3, F(t, Y, ZDZ! + Dy (1, Vi, Zp)] dt — 27 AW,
Y? = Dyé.

First, we have thafO (||Y9||52 + ||29||2) df < 4o0. Indeed, the a priori estimates applied
toY! = Y? andY? = 0 give, for a constar€,

Y12 4+ 1Z°12 < CE (IDg& 1> + IDg T (-, Y, Z)113) .
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We now turn back to our problem. Using the a priori estimates, we obtain for almost all
0 € [0, T] that

T 2
IDgY ™ — Y2, + |Dg 2t — 27|12 < CE [(/ 15| ds) } ,
6

where

8¢ = Dyf(s Ys, Zs) — Dy (s, YE, ZX) + 0y (S, Ys, Zo)YY!
—0y (s, Y&, ZDyYE + 8,1 (s, Ys, Z6)Z8 — 9, (s, YK, 25Dy ZK.

Now E( ;" 18K d9)2 < C(AL(T) + B{(T) + C{(T)), where

2

.
ANT) = IE(/ Dy f (s, Ys, Zs) — Dg f (s, YX, z§)|ds> ,
0
T 2
BI(T) = IE(/ 19y (s, Y&, Z5Y¢ — D9Y3k)|d3>
0
T 2
+E<f 19, F (s, Y&, ZE)(Z?—Dezznds) :
0
T 2
CUT) = IE(/ 1Dy T (S, Ys, Zs) — By f (S, Y, z';))Y§|ds)
%

T 2
+E ( / 1321 (s, Ys, Zs) — 8, F (s, Y&, Z¥)) Z¢| ds)
0

Moreover, Al (T) < IE([QT 1Ko (9)|(|Ys — Y¥| 4 |Zs — ZX|) d9)2. By the Cauchy-Schwartz
inequality,

2

]
E (/9 IKa(®)] (IYs — YX) ds)

_ (E (fer KG(S)ZdS)Z)l/Z (E </0T |YS—YSk|2ds>2)

Hence, AY(T) < IKalZ (IY — Y¥I3+ 11Z — Z¥|3).
Since(YX, Z¥) converges taY, Z) in By, it follows that lime ;o (1Y — Y¥||12 + || Z —
Z¥||2) = 0. Therefore,

1/2

.
lim / A(T)de = 0.
k——+o00 0
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Furthermore, sincéy f and d, f are bounded and continuous with respectytand z
and sincefoT(||Y9||252 + 1Z%)12)d6 < +oo, it follows by the Lebesgue theorem that
limy_. 400 fy CL(T)d6 = 0.

Next, since the derivatives df are bounded,

BY(T) < CT?|IDyY* - Y% + CT|DyZ¥ — Z%)12.

ChooseT so thate = max(CT?,CT) < 1. Fix a positive rea¢ > 0. There existiN > 0
such that, for ank > N,

)
/ (IDeY* — YOI, 4 D, 24 — 2°|2) df
0

]
< e—i—a/ (IDsY* = YPIZ, + 1Dy 2 — 2°1) do.
0

Thus, we recursively obtain, for eveky> N,

]
/0 (IDeY* = Y*|2 + Dy Z* — 2°|2) do

€
<
1-«
€
=<
1-«

.
—i—akf (IIDeY® = Y?IIZ, + 1Dy Z° — Z7113) do
0

+akK

whereK is a positive constant. Hence, sinceOa < 1, it follows that the sequence
(DyY¥, Dy Z¥) converges ifL?(0, T; (D*?)?) = L3, to (Y?, Z%). Consequently, since
IL¢, is closed for the nornj - [|2,, it follows that the limit(Y, Z) belongs tdLf , and that
aversion of(DyY, DgZ) is given by(Y?, Z%).

It remains to show that for the considered version of the Malliavin derivativésasfd
Z, DsYs = Zs. Notice that fort < s,

S S
Ys =Y; —/ f(r,Yr,Zr)dr—i-/- Z, dW .
t t
It follows from Lemma 5.1 that, for < 0 < s,

S
DoYs = Zy —/ [y f(r, Y, ZO)DoYr + 0 f(r, Yr, Z)Do Zr + Dy £(r, Yr, Z1)] dr
9

S
+/ DyZ dWi .
0

Then, by taking = s, it follows thatDsYs = Zs a.s. O
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REMARK. This result can be easily generalized from the gase 2 to the casg > 2
(but not 1< p < 2) by using the same arguments and inequality (5.8).

Application to the Linear Case.The notation is the same as in the section on linear
BSDEs ((2.8)). Let, y) be a boundedK, R")-valued predictable vector procegsan

element off3 (R), andé an element of.2 (R). Then we consider the solutiaiY, Z) of
the BSDE

(5.11) —dYe=[et + Vi B+ Z{nldt — ZFdW, Yr=§.

From Proposition 5.3, we obtain:
PROPOSITIONS.4. Suppose
o B.yeli,¢cH}NL], andé € L*NDyy.
o [y E(IDs£12d6 < +o00, [y 1Dsel3dé < +o00, and fy (IDgB§+ I Dey (1) d6 <

+00.

Then(Y, Z) € L2(0,T; (D*?)? x (D*?)™9), and, for eachl < i < n, a version of
{(DyY:, DyZy); 0< 6.t < T}isgiven by

() DY, =0, Djz;=0, 0<t<6H<T;

H . . T . . . . .
(i) DleYt = Dleg + / [ﬂleeYs + Vleezs + D:ev(/’s + YSDIG,BS + Z; DIGVS] ds
t

T .
—/ Dy Zs dW, f<t<T.
t
Moreover,{D;Y;; 0 <t < T} defined by(ii) isa versionofZ;; 0 <t < T}.

REMARK. If the coefficientss andy are bounded deterministic functions, it is sufficient
to suppose thap € HZ N3, and¢ € L2 N Dy ».

Recall that from Proposition 2., can be written

T
(5.12) Y1 = E |:Ft,T$ +/ [y s@s d3|7:ti| ,
t
where(T'ts,t <'s < T) is the adjoint process defined by the forward LSDE,
dlys = T s[Bs ds+ v dW], e =1

Our aimis now to obtain a similar expression fyrand, more generally, sinég = D; Y,
an expressionfdd, Y;. Recallthatitis possible to derive in the Malliavin sense a conditional
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expectation (see Nualart 1986, p. 91); hence, from (5.12) it follows thad, fot < T,

N
DoYy = ]E|:D0 (Ft.T’E +/ Ft,s§05d$> |~7:t:| .
t

Furthermore, by natural properties on the Malliavin derivative,

T
Dy <Ft,T$ +/ It sps dS) = Do(T't,7)€ + I't,7 Doé
t
T T
+f DG(FI,S)(Pst+/ I'ts Dogs ds.
t t

Consequently, we obtain the following (natural) property.

PrROPOSITIONS.5. Ford <t <T,

.
Dot = E |:Ft.T Dyé + Dol't 7 & +/ (T't,sDogs + DyT't s (Ps)d5|-7:t:| .
t

Actually Karatzas and Ocone (1992) gave another type of expressiddYorlLet us
show this property in our context. Recall first tHa¥ can also be written using the adjoint
procesd”, becauséDyY, Dy Z) is a solution of a linear BSDE similar to that of, Z): for
0 <t<T,

(5.13) DY = E [Ft,'r Dy& +/ [t s(Dyws + YsDyBs + ZiDyys) dSIﬂ:| .
t

Applying this property, we obtain the following representation formula established by
Karatzas and Ocone (in the cagse= 8 = 0) (Karatzas and Ocone 1992, formula 2.20,
Theorem 2.5, and Corollary 2.6) under very weak integrability conditiéns D11, y €

La,, ).

PROPOSITIONS.6. Forf <t <T,

.
DoY: = E[Ft,T D9§+/ It s(Dogs + YsDoBs) ds
t

T T
+ (Ft,Té +/ 1—‘t,s‘ﬂsds> </ DOVs*dWs) |~7:ti| .
t t

Proof. Sincel'; 1& + ftT ispsds=Y; + ftT It sZ% dWs, we have

T T T
E[<Ft,T$+/ Ft,sqosds> (f DeVstVs>|~7:t:|=E|:/ Ft,sZ;‘Deysdsm]
t t t
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The result follows from (5.13). O

Application to Example 1.1, Section 1.3We come back to Example 1.1 seen in Sec-
tion 1.3 (hedging claims with a higher interest rate for borrowing) and studied by Cvitanic
and Karatzas (1993) under slightly different assumptions. Recall that in this example the
hedging strategyX, w) (wealth, portfolio) satisfies

dXt =r; Xt dt + T[t*O'tet dt + T[t*O’t d\M — (R( — rt)(Xt — 7'[?1)7 dt, X1 = %’ .
Let (XR, o7 R) be the solution of the LBSDE

(5.14) dX} = r XRdt+ (7N * o6 dt
+ @D o dW — (R — r) (X = (7)* D dt, XR=¢.

Notice thatXR is equal to the ex post prick#”) (defined in the example studied in
Section 3.3) fo; = R andy; = ot6; + (ry — By)1, dP @ dt a.s.

Itis interesting to find a sufficient condition which ensures tatequal toXR. Actually,
it is easy to see that it is sufficient to have

(5.15) 7H*1 > xR, dP @ dt as.

Recall now that, by Proposition 5.3,is also a function o given bym; = (o) 1D¢ Xt,
dP®dta.s., wher¢D, X;, 0 < u <t < T) denotes the version of the Malliavin derivative
of the process( defined in Proposition 5.3. It follows that (5.15) can also be written as

(o) DX = X}, dP®du ass.

Using the comparison theorem and the Malliavin calculus, we state the following proposi-
tion, which generalizes a property obtained by Cvitanic and Karatzas (1993).

PROPOSITIONS.7. Suppose that the coefficients R, b, and o; are deterministic
functions of t and suppose thiak D1 . If 1*(03‘)*1Du§ > &,dP®du as., then the price
for £ is X = XR.

Proof. In order to show the proposition, it is sufficient to prove thiato;")~1Dy XR
> XR, dP ® dua.s. Recall first thatX®, = ®) is solution of the BSDE

—dX{ = [-RX{ = (7 *(0tb + (1 — R)D] dt — (77)*or AW,

(516) e,

By Proposition 5.3(XR, 7®) € L2(0, T ; (D*?) x (D**)"), and, for 1<i < n, a version
of {(DIXR, DizR); 0<u<t<T}is

—dD X} = —R D\ XR — (D\7R)* (ot + (e — R)1) dt — (D)) *or AW,

G0 pix#= pig.,
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PutY! = 1*(o) 1Dy XR and z! = (Dym®)(oy) 711, for0 < u <t < T. We easily see
that(Y", Z{', u <t < T) is the solution of the BSDE

—dY! = —RY! — (Z)*(0tb + (re — R)D dt — (Z)*or d W,

®18) vy Z o) 1Dk .

Then applying the comparison theorem(®R, =) and (Y!, Z"), we have thatr!! >
XR, dP, a.s., and the result easily follows. O

From this proposition we deduce the property stated by Cvitanic and Karatzas (1993,
Example 9.5).

PROPOSITIONS.8. Suppose the coefficients are deterministic functions of t agcied
be a contingent claim of the forn= v (Pr), wherey is a given functiony: R" — R*
of class C with bounded derivative and such thal'_; x'dx ¥ (x) > ¥ (x) (for example,
if ¢ is a convex function of class*Gwith y(0) = 0, this condition is satisfied). Then
Xp=XR,0<t<T,as.

Proof. By the chain rule,
. n . . n .
D{& = dw(Pr)D!{ (P)) = Y ¥ (Pr)Proj(t).
i=1 i=1
Hence (o) *Di& = (35 ¥ (Pr)P}) and the result follows from Proposition 5.7. O

REMARK. The result still holds for the classical European optoa (PT1 — K)* where
K is a real (positive) constant, if the law of the random varidilés absolutely continuous
with respect to the Lebesgue measur&dqmecall that this condition is satisfied under some
nondegeneracy conditions on the coefficients; see Nualart 1995, Theorem 2.3.2). Indeed,
in this casey is given byy (x) = (x — K)*. ¢ is of clasC! on ]— oo, K[ and JK, 4-o0[
and¢’(x) > 0 for anyx £ K. Recall that the chain rule still holds in this case (Nualart
1995, Proposition 1.23), since the law of the random variﬁ’élds absolutely continuous
with respect to Lebesgue measure. Consequently, the result follows from Proposition 5.7.
Thus, the contingent claim is evaluated under a currentRed@d a risk premium equal
to 6 + (ry — Rt)at‘ll. Notice that ife = I, the risk premium is lower than the primitive
oned.

Application to the Markovian Case.In this section we consider the BSDE associated
with a forward equation defined in Section 4.1. By the results of Section 5.2 we have
that if the coefficients are differentiable, then the soluti¥h*, Z5*) is differentiable in
Malliavin's sense.
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PrOPOSITIONS.9. If the coefficients joo, f, andW are continuously differentiable with
respect ta(x, y, z) with uniformly bounded derivatives, then

e Forany0 <t <s<T,xeRP and(Y*, ZL¥) € L3(0, T; (D*?)9 x (D12)"™9),
and for eachl <i < n aversion of(D,Ys, DyZs); 0 <6,t <s < T}is given by

D)Ys=0, D}Zs=0, 0<O<t<T or s<0<T;
andfort<6 < T,{(D}Ys, D}Zs); 6 < s < T} satisfies the following LBSDE:

(5.19) —dD,Ys = [dyf(s, Ps,Ys, Z9)D}Ys + 8, (s, Ps, Ys, Zs) D} Zs] ds
403y f (s, Ps, Ys, Zs) D}, Psds — D}, Zs* dW,
D,Yr = W' (Pr)D)Pr.

Moreover,{DsYs; t < s < T} defined by (5.19) isaversionffs; t <s< T}
e Forany0<t<s<T, xeRP,

Z8% = 3, YEX (3¢ PE) "o (s, PLY), ds@ dPas.

Proof. First, recall that forany < t <s < T, x € RP, (P{*) € L?(0, T; (D*?)P),
and for each k< i < n, aversion o DyP{*; 0 < 6,t < s < T}is given byD, PL* =
0, 0 <6 <t,and, fort <9,{D},P:%; 0 <s < T}isthe unique solution of the linear SDE

dDjPs = axb(s, Ps) D Psds + dyo; (s, Ps) D), PsdW/, DiPy = 0i(6, Py).
Moreover, from the uniqueness of the solution of the SDE satisfidd#, it follows that
(5.20) Dy Ps = 0 Ps(3xPy) 1o (0, Py), t<6<s<T,Pas.

Recall now that sup,_t (| PE*| + |0« PL*|) € LP for any p > 1. Then, using the assump-
tions made on the coefficients, we see that the hypotheses of Proposition 5.3 are satisfied,
so the first statement of the proposition is proved.

It remains to show the second one. The uniqueness of the solution of BSDE (5.19) and
(5.20)yieldD}Ys = dxYs(3x Py) 01 (8, Py) or, equivalentlyDy, Ys = dxYs(3x Ps) 1o (6, Py).
Hence, by taking = s, DsYs = 94 Ys(dx Ps) 1o (s, Ps). By the first statemenZs = DsYs
almost surely. The second statement now easily follows. O
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